Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolution in the Global Logistics Sector – The Physical Internet

21.08.2014

Comprehensive interconnection, speed and effectiveness – a world without the Internet is unimaginable. When something works this well, you have to ask why it only works in the digital world and not the real, physical world.

“By 2050 at the latest, the situation may change. The ‘Internet of Things’ will revolutionize the world to the same extent that the Internet did before it,” said Rod Franklin, professor for logistics at Kühne Logistics University in Hamburg.


Prof. Rod Franklin

As efficiently as supply chains are organized today, “they follow a hypothesis that accepts loads of less than full capacity plus the higher energy costs connected to this, and delays as an intrinsic part of the system,” added Franklin. Today, we can determine exactly where specific goods are located within the supply chain at a specific time and inform our customers that the circumstances dictate a probable delay in delivery of a few days.

This represents major progress when it comes to communication. “However, we could also think about how goods might follow completely new channels to get to customers and how to avoid wasting as many resources as possible in the process. We could transfer the unbeatably efficient logic of the Internet to the physical world,” said the logistics expert.

What we need are smaller, standardized container formats, open source software for complete supply chain maps, and transport means that can be used jointly to move goods around the globe and bring them to their destinations. And of course the vision that this is where the future of logistics lies is also necessary.

“Logistics is the most-used industry in the world and at approximately 15% of global GDP annually, also one with significant potential for added value. But we are still not using it effectively enough,” Franklin noted. Only around 10 percent of the logistics services are pure transport services – empty journeys, idle time, loading and unloading take up the remainder.

How would a supply chain based on the Physical Internet look? Franklin describes it like this: “Trucks will always be loaded to their maximum capacity: therefore, highly effectively. This would eliminate empty journeys. Open source software would ensure that only goods that can be immediately re-distributed by other logistics centers along the route would be transported. It does not matter which producer is the point of origin; and who the transport means belongs to is also unimportant.”

The advantages are obvious. Trucks would always be effectively at 100% capacity. The initial drivers would only travel a specific route – others would be responsible for forwarding the freight – and they would transport other goods in other trucks back to the hub in the evening and then go home. The Physical Internet advocate’s balance is convincing: “In sum, this would mean less traffic on the roads, lower emissions and costs, and greater speed, quality, and service.”

“The Physical Internet is what you get when you think green logistics through to the end,” said Franklin. “And it would be a completely new form of cooperation within the logistics sector. Not all companies can develop their own global network. The sum of all the providers equals the global logistics network, and of course it has to translate into a fair price model in which each provider is appropriately compensated for its part of the logistic service.”

When looking into the future, he is sure of one thing: “We can stop concentrating on optimizing the means of transport and start focusing on how we transport. Routes and ownership of the means of transport will no longer be important – the focus will be on speed, costs, and service quality.”

However, one problem remains: on land, the highly successful standard container for maritime transport is only suitable for train transport. In order to realize the Physical Internet, we will have to develop smaller standard containers that facilitate a producer-to-consumer supply chain. “But is there any reason to think this can’t happen?” asked Franklin. After all, no one saw much of a future for ship containers in the 1950s. But without them, today’s global economy would not exist.

The Physical Internet will require us to rethink – and think innovatively, too. “We have the technical and technological prerequisites now. Industry 4.0, which is based on digitalization, interconnection and automation, is driving the need for Global Logistics 4.0,” said Franklin with conviction. “If we take on the challenge of re-organizing supply chains and learn to understand them as completely new forms of cooperation, we can change the world for the better.”

Weitere Informationen:

http://www.the-klu.org/recent-press-releases/

Dr. Ulrich Vetter | idw - Informationsdienst Wissenschaft

Further reports about: GDP Global Industry Internet Logistik Sector Unternehmensführung avoid capacity determine responsible

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>