Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolution in the Global Logistics Sector – The Physical Internet

21.08.2014

Comprehensive interconnection, speed and effectiveness – a world without the Internet is unimaginable. When something works this well, you have to ask why it only works in the digital world and not the real, physical world.

“By 2050 at the latest, the situation may change. The ‘Internet of Things’ will revolutionize the world to the same extent that the Internet did before it,” said Rod Franklin, professor for logistics at Kühne Logistics University in Hamburg.


Prof. Rod Franklin

As efficiently as supply chains are organized today, “they follow a hypothesis that accepts loads of less than full capacity plus the higher energy costs connected to this, and delays as an intrinsic part of the system,” added Franklin. Today, we can determine exactly where specific goods are located within the supply chain at a specific time and inform our customers that the circumstances dictate a probable delay in delivery of a few days.

This represents major progress when it comes to communication. “However, we could also think about how goods might follow completely new channels to get to customers and how to avoid wasting as many resources as possible in the process. We could transfer the unbeatably efficient logic of the Internet to the physical world,” said the logistics expert.

What we need are smaller, standardized container formats, open source software for complete supply chain maps, and transport means that can be used jointly to move goods around the globe and bring them to their destinations. And of course the vision that this is where the future of logistics lies is also necessary.

“Logistics is the most-used industry in the world and at approximately 15% of global GDP annually, also one with significant potential for added value. But we are still not using it effectively enough,” Franklin noted. Only around 10 percent of the logistics services are pure transport services – empty journeys, idle time, loading and unloading take up the remainder.

How would a supply chain based on the Physical Internet look? Franklin describes it like this: “Trucks will always be loaded to their maximum capacity: therefore, highly effectively. This would eliminate empty journeys. Open source software would ensure that only goods that can be immediately re-distributed by other logistics centers along the route would be transported. It does not matter which producer is the point of origin; and who the transport means belongs to is also unimportant.”

The advantages are obvious. Trucks would always be effectively at 100% capacity. The initial drivers would only travel a specific route – others would be responsible for forwarding the freight – and they would transport other goods in other trucks back to the hub in the evening and then go home. The Physical Internet advocate’s balance is convincing: “In sum, this would mean less traffic on the roads, lower emissions and costs, and greater speed, quality, and service.”

“The Physical Internet is what you get when you think green logistics through to the end,” said Franklin. “And it would be a completely new form of cooperation within the logistics sector. Not all companies can develop their own global network. The sum of all the providers equals the global logistics network, and of course it has to translate into a fair price model in which each provider is appropriately compensated for its part of the logistic service.”

When looking into the future, he is sure of one thing: “We can stop concentrating on optimizing the means of transport and start focusing on how we transport. Routes and ownership of the means of transport will no longer be important – the focus will be on speed, costs, and service quality.”

However, one problem remains: on land, the highly successful standard container for maritime transport is only suitable for train transport. In order to realize the Physical Internet, we will have to develop smaller standard containers that facilitate a producer-to-consumer supply chain. “But is there any reason to think this can’t happen?” asked Franklin. After all, no one saw much of a future for ship containers in the 1950s. But without them, today’s global economy would not exist.

The Physical Internet will require us to rethink – and think innovatively, too. “We have the technical and technological prerequisites now. Industry 4.0, which is based on digitalization, interconnection and automation, is driving the need for Global Logistics 4.0,” said Franklin with conviction. “If we take on the challenge of re-organizing supply chains and learn to understand them as completely new forms of cooperation, we can change the world for the better.”

Weitere Informationen:

http://www.the-klu.org/recent-press-releases/

Dr. Ulrich Vetter | idw - Informationsdienst Wissenschaft

Further reports about: GDP Global Industry Internet Logistik Sector Unternehmensführung avoid capacity determine responsible

More articles from Transportation and Logistics:

nachricht Variable speed limits could reduce crashes, ease congestion in highway work zones
07.06.2017 | University of Missouri-Columbia

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Innovative LED High Power Light Source for UV

22.06.2017 | Physics and Astronomy

Mathematical confirmation: Rewiring financial networks reduces systemic risk

22.06.2017 | Business and Finance

Spin liquids − back to the roots

22.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>