Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolution in the Global Logistics Sector – The Physical Internet

21.08.2014

Comprehensive interconnection, speed and effectiveness – a world without the Internet is unimaginable. When something works this well, you have to ask why it only works in the digital world and not the real, physical world.

“By 2050 at the latest, the situation may change. The ‘Internet of Things’ will revolutionize the world to the same extent that the Internet did before it,” said Rod Franklin, professor for logistics at Kühne Logistics University in Hamburg.


Prof. Rod Franklin

As efficiently as supply chains are organized today, “they follow a hypothesis that accepts loads of less than full capacity plus the higher energy costs connected to this, and delays as an intrinsic part of the system,” added Franklin. Today, we can determine exactly where specific goods are located within the supply chain at a specific time and inform our customers that the circumstances dictate a probable delay in delivery of a few days.

This represents major progress when it comes to communication. “However, we could also think about how goods might follow completely new channels to get to customers and how to avoid wasting as many resources as possible in the process. We could transfer the unbeatably efficient logic of the Internet to the physical world,” said the logistics expert.

What we need are smaller, standardized container formats, open source software for complete supply chain maps, and transport means that can be used jointly to move goods around the globe and bring them to their destinations. And of course the vision that this is where the future of logistics lies is also necessary.

“Logistics is the most-used industry in the world and at approximately 15% of global GDP annually, also one with significant potential for added value. But we are still not using it effectively enough,” Franklin noted. Only around 10 percent of the logistics services are pure transport services – empty journeys, idle time, loading and unloading take up the remainder.

How would a supply chain based on the Physical Internet look? Franklin describes it like this: “Trucks will always be loaded to their maximum capacity: therefore, highly effectively. This would eliminate empty journeys. Open source software would ensure that only goods that can be immediately re-distributed by other logistics centers along the route would be transported. It does not matter which producer is the point of origin; and who the transport means belongs to is also unimportant.”

The advantages are obvious. Trucks would always be effectively at 100% capacity. The initial drivers would only travel a specific route – others would be responsible for forwarding the freight – and they would transport other goods in other trucks back to the hub in the evening and then go home. The Physical Internet advocate’s balance is convincing: “In sum, this would mean less traffic on the roads, lower emissions and costs, and greater speed, quality, and service.”

“The Physical Internet is what you get when you think green logistics through to the end,” said Franklin. “And it would be a completely new form of cooperation within the logistics sector. Not all companies can develop their own global network. The sum of all the providers equals the global logistics network, and of course it has to translate into a fair price model in which each provider is appropriately compensated for its part of the logistic service.”

When looking into the future, he is sure of one thing: “We can stop concentrating on optimizing the means of transport and start focusing on how we transport. Routes and ownership of the means of transport will no longer be important – the focus will be on speed, costs, and service quality.”

However, one problem remains: on land, the highly successful standard container for maritime transport is only suitable for train transport. In order to realize the Physical Internet, we will have to develop smaller standard containers that facilitate a producer-to-consumer supply chain. “But is there any reason to think this can’t happen?” asked Franklin. After all, no one saw much of a future for ship containers in the 1950s. But without them, today’s global economy would not exist.

The Physical Internet will require us to rethink – and think innovatively, too. “We have the technical and technological prerequisites now. Industry 4.0, which is based on digitalization, interconnection and automation, is driving the need for Global Logistics 4.0,” said Franklin with conviction. “If we take on the challenge of re-organizing supply chains and learn to understand them as completely new forms of cooperation, we can change the world for the better.”

Weitere Informationen:

http://www.the-klu.org/recent-press-releases/

Dr. Ulrich Vetter | idw - Informationsdienst Wissenschaft

Further reports about: GDP Global Industry Internet Logistik Sector Unternehmensführung avoid capacity determine responsible

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>