Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computers solve delivery problems

With the gift-giving season almost upon us and the ongoing concerns about the British postal system, it is timely that researchers should turn their attention to the so-called Travelling Salesman Problem.

Writing in a forthcoming issue of the Inderscience publication the International Journal of Logistics Systems and Management, researchers suggest a new approach to cutting journey times and so reducing pollution and speeding up deliveries for couriers everywhere.

According to Chandra Sunil Kumar and T.T. Narendran of the Department of Management Studies, at IIT-Madras, in Chennai, India, the Travelling Salesman Problem, or to give it its modern name the Vehicle Routing Problem (VRP), is one of the biggest headaches for companies running delivery and pickup services - how to ensure the route taken by the couriers is not only as short as possible and so uses the least fuel but also ensures that all drop-offs and pick-ups are made in a timely manner. The efficiency of services involving express couriers, dial-a-ride systems, and partial-truck-load carriers might all be improved.

Narendran and colleagues have devised a computer model to investigate how companies might map out the optimum routes for their couriers.

In their model the researchers consider a single vehicle operating within a region. Each day, there are calls from customers, packages to deliver, and others to collect and deliver elsewhere. Static customer requests are those that are known in advance, while dynamic requests arise as the day progresses. The vehicle starts from the depot, moves to serve static customers according to a schedule of advance requests. As the day progresses, new requests come in and the dispatcher has to re-route to fulfil these new requests while minimising the total distance travelled in accommodating advance bookings.

The vehicle then follows the latest determined route until a new dynamic request arrives. At that time, the vehicle is between the start and finish of the original plan. Now the plan has to add a pickup and delivery point into the unexecuted part of the plan so that the additional distance to be travelled is minimised. At this juncture, the computer model inserts a heuristic - a rule of thumb. In one method, the customer's new request is positioned appropriately between two of the places to be visited as per the original plan. In the second approach, the entire sector remaining to be served is reframed with the inclusion of the new request; this part of the problem is solved afresh using an optimization approach.

The team has carried out tests of the model computationally and found that the distance travelled by the vehicle increases with increasing numbers of new requests. However, the heuristics can work in real-time and every time a new request arises, they can process the information and re-route the vehicle to keep the total distance as low as possible.

The team points out that their system will not only help courier companies but could be used equally well by dial-a-ride services, which fill the gap between public transport and taxi cabs, fast food and groceries home deliveries, emergency service responses, including fire, police, and ambulance, repair services, and perhaps even parcel and mail delivery services.

Jim Corlett | alfa
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>