Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Colossus Gets its Name

08.10.2007
ALMA Antenna Transporter Presentation

Today, the first of the two ALMA antenna transporters was given its name at a ceremony on the compounds of the manufacturer, the heavy-vehicle specialist Scheuerle Fahrzeugfabrik GmbH, in Baden-Württemberg. The colossus, 10 metres wide, 20 metres long and 6 metres high, will be shipped to Chile by the end of the month. The second one will follow in a few weeks.

The transporter was named 'Otto' in honour of Otto Rettenmaier, the owner of the Scheuerle company. "The rather unusual move to name a vehicle is a recognition of the remarkable achievement these unique machines represent," said Hans Rykaczewski, the European ALMA Project Manager. "Their sizes alone would justify using superlatives to describe them. But they are also outstanding as they will operate at 5000 metres altitude, where the air is rare, and they have to be able to place 115-ton antennas with a precision of a few millimetres," he added.

"The ALMA antenna transporters are the proof of the excellence of our staff and of our ability to build heavy vehicles that are at the limits of the possible," said Otto Rettenmaier. "Never in the history of our company have we had to comply with such exceptional requirements on material and techniques as we had to do with these machines. We are proud as a company to have been able to contribute with such an exceptional piece of technology for astronomical research."

The ALMA Project, in which ESO leads the construction and the operations on behalf of Europe, is a giant, international observatory currently in construction on the high-altitude Chajnantor site in Chile, which will be composed initially of 66 high-precision telescopes, operating at wavelengths of 0.3 to 9.6 mm. The ALMA antennas will be electronically combined and provide astronomical observations which are equivalent to a single large telescope of tremendous size and resolution.

The 66 antennas of the array can be placed on 192 different pads, covering antenna configurations as compact as 150 metres to as wide as 15 kilometres. Changing the relative positions of the antennas and thus also the configuration of the array allows for different observing modes, comparable to using a zoom lens on a camera.

Given their important functions, both for the scientific work and in transporting high-tech antennas with the required care, the vehicles must live up to very demanding operational requirements. To address these, Scheuerle has developed and built two very special transporters. Building heavy vehicles able to transport with great precision 115-ton antennas is not a problem per se for this company, which specialises in building huge transporters. The problem however was to produce a vehicle able to operate at such a high altitude, where the two engines will lose about half of their power (compared to sea level) because of the reduced oxygen content of the air. With their two 500 kW diesel engines (nearly as much as two Formula 1 engines), the ALMA transporters will be able to move at the speed of 20 km/h when empty and 12 km/h when loaded with an antenna.

Notwithstanding its impressive dimensions, the transporter can be manoeuvred by a single operator, the precise positioning being made possible by a hydrostatic system while the electronic 28-wheel drive allows very precise motions.

"When completed in 2012, ALMA will be the largest and most capable imaging array of telescopes in the world," said Massimo Tarenghi, the ALMA Director. "The ALMA antenna transporters, which are unique technological jewels, beautifully illustrate how we are actively progressing towards this goal."

More Information

ALMA will be able to probe the Universe at millimetre and submillimetre wavelengths with unprecedented sensitivity and resolution, with an accuracy up to ten times better than the Hubble Space Telescope, and complementing images made with ESO's Very Large Telescope Interferometer.

ALMA will be the forefront instrument for studying the cool universe - the relic radiation of the Big Bang, and the molecular gas and dust that constitute the very building blocks of stars, planetary systems, galaxies, and life itself.

Because ALMA will observe in the millimetre and submillimetre wavelengths the atmosphere above the telescope must be transparent. This requires a site that is high and dry. ALMA will thus be installed at the 5000m high plateau of Chajnantor in the Atacama Desert of Chile, the world's driest area - the next best location to outer space for these high-accuracy astronomical observations.

The ALMA project is a partnership between Europe, East Asia and North America in cooperation with the Republic of Chile. ALMA is funded in Europe by ESO, in East Asia by the National Institutes of Natural Sciences of Japan in cooperation with the Academia Sinica in Taiwan and in North America by the U.S. National Science Foundation in cooperation with the National Research Council of Canada. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of East Asia by the National Astronomical Observatory of Japan and on behalf of North America by the National Radio Astronomy Observatory, which is managed by Associated Universities, Inc.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/pr-45-07.html

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>