Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Colossus Gets its Name

08.10.2007
ALMA Antenna Transporter Presentation

Today, the first of the two ALMA antenna transporters was given its name at a ceremony on the compounds of the manufacturer, the heavy-vehicle specialist Scheuerle Fahrzeugfabrik GmbH, in Baden-Württemberg. The colossus, 10 metres wide, 20 metres long and 6 metres high, will be shipped to Chile by the end of the month. The second one will follow in a few weeks.

The transporter was named 'Otto' in honour of Otto Rettenmaier, the owner of the Scheuerle company. "The rather unusual move to name a vehicle is a recognition of the remarkable achievement these unique machines represent," said Hans Rykaczewski, the European ALMA Project Manager. "Their sizes alone would justify using superlatives to describe them. But they are also outstanding as they will operate at 5000 metres altitude, where the air is rare, and they have to be able to place 115-ton antennas with a precision of a few millimetres," he added.

"The ALMA antenna transporters are the proof of the excellence of our staff and of our ability to build heavy vehicles that are at the limits of the possible," said Otto Rettenmaier. "Never in the history of our company have we had to comply with such exceptional requirements on material and techniques as we had to do with these machines. We are proud as a company to have been able to contribute with such an exceptional piece of technology for astronomical research."

The ALMA Project, in which ESO leads the construction and the operations on behalf of Europe, is a giant, international observatory currently in construction on the high-altitude Chajnantor site in Chile, which will be composed initially of 66 high-precision telescopes, operating at wavelengths of 0.3 to 9.6 mm. The ALMA antennas will be electronically combined and provide astronomical observations which are equivalent to a single large telescope of tremendous size and resolution.

The 66 antennas of the array can be placed on 192 different pads, covering antenna configurations as compact as 150 metres to as wide as 15 kilometres. Changing the relative positions of the antennas and thus also the configuration of the array allows for different observing modes, comparable to using a zoom lens on a camera.

Given their important functions, both for the scientific work and in transporting high-tech antennas with the required care, the vehicles must live up to very demanding operational requirements. To address these, Scheuerle has developed and built two very special transporters. Building heavy vehicles able to transport with great precision 115-ton antennas is not a problem per se for this company, which specialises in building huge transporters. The problem however was to produce a vehicle able to operate at such a high altitude, where the two engines will lose about half of their power (compared to sea level) because of the reduced oxygen content of the air. With their two 500 kW diesel engines (nearly as much as two Formula 1 engines), the ALMA transporters will be able to move at the speed of 20 km/h when empty and 12 km/h when loaded with an antenna.

Notwithstanding its impressive dimensions, the transporter can be manoeuvred by a single operator, the precise positioning being made possible by a hydrostatic system while the electronic 28-wheel drive allows very precise motions.

"When completed in 2012, ALMA will be the largest and most capable imaging array of telescopes in the world," said Massimo Tarenghi, the ALMA Director. "The ALMA antenna transporters, which are unique technological jewels, beautifully illustrate how we are actively progressing towards this goal."

More Information

ALMA will be able to probe the Universe at millimetre and submillimetre wavelengths with unprecedented sensitivity and resolution, with an accuracy up to ten times better than the Hubble Space Telescope, and complementing images made with ESO's Very Large Telescope Interferometer.

ALMA will be the forefront instrument for studying the cool universe - the relic radiation of the Big Bang, and the molecular gas and dust that constitute the very building blocks of stars, planetary systems, galaxies, and life itself.

Because ALMA will observe in the millimetre and submillimetre wavelengths the atmosphere above the telescope must be transparent. This requires a site that is high and dry. ALMA will thus be installed at the 5000m high plateau of Chajnantor in the Atacama Desert of Chile, the world's driest area - the next best location to outer space for these high-accuracy astronomical observations.

The ALMA project is a partnership between Europe, East Asia and North America in cooperation with the Republic of Chile. ALMA is funded in Europe by ESO, in East Asia by the National Institutes of Natural Sciences of Japan in cooperation with the Academia Sinica in Taiwan and in North America by the U.S. National Science Foundation in cooperation with the National Research Council of Canada. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of East Asia by the National Astronomical Observatory of Japan and on behalf of North America by the National Radio Astronomy Observatory, which is managed by Associated Universities, Inc.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/pr-45-07.html

More articles from Transportation and Logistics:

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>