Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World first as fast jet pilot directs multiple unmanned aircraft

04.04.2007
A system which provides a single pilot with the ability to fly their own aircraft while simultaneously directing up to four further unmanned aircraft has been successfully demonstrated from the cockpit of a military fast jet for the first time.

The system, developed by QinetiQ and funded by the UK Ministry of Defence (MOD), gives unmanned aircraft an advanced level of independence and intelligence, or autonomy. A series of successful flight trials were flown using a Tornado as the command and control aircraft and a BAC 1-11 trials aircraft acting as a "surrogate" unmanned air vehicle (UAV). The Tornado pilot also had responsibility for commanding a further three simulated UAVs.

The demonstration flights were conducted last week, taking off from MOD Boscombe Down in Wiltshire and flying largely in uncontrolled airspace over South West England. Throughout the sorties a mixed RAF and QinetiQ flight crew was retained on the 1-11 for safety monitoring and control during takeoff and landing. QinetiQ's Tornado Integrated Avionics Research Aircraft (TIARA), flown by an RAF test pilot, then assumed control of the 1-11 surrogate UAV and three simulated UAVs for the middle section of each flight.

Working in combination, the Tornado and four UAVs carried out a simulated ground attack on a moving target. The sophisticated computer on the UAVs allowed them to act autonomously i.e. self-organise, communicate, sense their environment, including possible enemies, and target their weapons. However, the final decision to fire any (simulated) weapons was retained by the Tornado pilot. The system has been designed to provide the UAVs with a significant degree of independent intelligence in order to greatly reduce the workload of the pilot but also ensures that the most important decisions are retained by a human operator.

Tony Wall, Managing Director of QinetiQ's Air Division, said: "The UK is playing a leading role in the development of UAV technology and this autonomy programme is truly world-leading. Working closely with our MOD customers and RAF partners, we are delighted with the successes achieved at Boscombe Down last week. There remains a great deal of work to be done before a system like this could be considered for operations but the trials represent an important step in proving that complex autonomy technologies are ready to move from a simulated world to realistic flight conditions."

Before flights began the entire UAV system was thoroughly tested in a QinetiQ simulation environment at Bedford. This enabled the flight crew and trials team to rehearse the first real sortie 'flying' from a 'virtual' Boscombe Down using all the software and hardware that was installed in the

Tornado and the UAVs. This approach has realised significant cost savings through the reduction in flying hours and associated support costs.

The UAV autonomy technology developed for these trials is feeding into two further government- backed programmes. QinetiQ is playing a leading role in the Taranis project, a £124 million joint industry and MOD initiative to develop an autonomous unmanned combat aircraft. QinetiQ's technology is also supporting the £32 million ASTRAEA project, a joint industry and DTI initiative to explore the technical and regulatory challenges of using UAVs for civil and commercial applications. The ability to direct multiple autonomous unmanned aircraft could deliver benefit in a range of civil scenarios, including coastguard search and rescue, disaster relief operations or during environmental monitoring.

Ben White | alfa
Further information:
http://www.QinetiQ.com

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>