Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


CESAR could hail cheaper and greener small aircraft

A £280,000 grant to engineers at the University of Manchester could help spark the development of cheaper, lighter and greener small passenger aircraft.

A team from the Power Conversion Group at the University will use the money to investigate how current mechanical and hydraulic systems on small aircraft - such as private jets and those used for short flights - can be improved using more advanced electrical engineering.

The research forms part of the Cost Effective Small Aircraft (CESAR) project, which involves 35 commercial and academic organisations right across the European Union.

All aspects of aircraft design and development will be examined during the EU-funded project, with the ultimate aim to produce a new concept for aircraft with between 10 and 50 seats.

It's hoped it will ultimately lead to lower development, running and maintenance costs, while still ensuring good passenger safety and comfort, and lower environmental impact.

In comparison to the latest breed of high-tech jumbo jets, which feature advanced electrical systems, small passenger aircraft tend to use control systems that have not seen any significant technical advance for a number of years.

Dr Nigel Schofield and a small team of researchers will concentrate on developing electrical systems to operate external flight control surfaces like the rudder, wing flaps and the landing gear.

It's believed that reduced mass and improvements in energy efficiency achieved by the introduction of electromechanical and electrohydraulic systems will bring down the cost of aircraft manufacture and operation.

Replacing bulky mechanics and hydraulics with more electrically based systems could also allow a small aircraft to carry more passengers and therefore reduce the carbon footprint of each traveller. Less mass would also mean less fuel burn and less carbon dioxide being pumped into the atmosphere.

Dr Schofield, who works in the Power Conversion Group within The School of Electrical and Electronic Engineering, said: "With the increasing popularity of air travel, the demand for smaller commercial aircraft is likely to increase in coming years.

"The view is that short haul flights within Europe will become more extensive as the Eastern European counties expand their trade with the West.

"The grant we have received will allow us to employ two full-time researchers to carry out extensive research into how electromechanical and electrohydraulic systems can be effectively applied within small aircraft.

"This is an exciting project involving many partners across Europe, and particularly from Eastern Europe.

"It certainly won't provide a solution to the huge problem of aircraft emissions, but it could lead to cheaper, smarter and more environmentally friendly aircraft taking to the skies."

Jon Keighren | alfa
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>