Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origami solves road map riddle

19.02.2002


Computer model unfolds the map muddle.
© Getty Images


Match up folds to fight stubborn paper.

No road journey is complete without a wrestle with the map. Now a US computer scientist has worked out why the map usually wins.

Erik Demaine of the Massachusetts Institute of Technology in Cambridge has come up with an origami algorithm that predicts when a stubborn street plan will be re-foldable. "It’s the meeting of paper folding and computer science," he says.



The rules governing whether a sheet of paper divided into a grid of folds can be pleated back into a packet will confirm many motorists’ hunches.

Aligning mountain folds, protruding out of the sheet, and valley folds, poking inwards, is the key, Demaine told the meeting of the American Association for the Advancement of Science in Boston. "If they match up it’s guaranteed to work," he said. "If they don’t, you’re toast."

Crumpling the map into the glove box won’t help. A single 45° fold in the sheet, and the problem foxes even a computer, Demaine found. The models are probably little help to the harassed motorist, he admits.

Paper does not always follow predictions, warns mathematician Martin Kruskal of Rutgers University in New Jersey. Unlike a computer model, real paper has thickness - an A4 sheet is nearly impossible to fold in half more than six times. "Idealization has limitations," he says.

Computational origami is attacking other seemingly intractable paper-folding challenges. The gift-wrapping problem - the smallest square of paper that can cover a regular object - challenges many at Christmas. Comfortingly, it has only been solved for wrapping a simple cube.

Such algorithms can also predict whether a three-dimensional object can be unfolded into a flat sheet. The sheet-metal industry uses the program in reverse to build furniture or cars from a single sheet. Computational origami also creates new designs for the Japanese art.

HELEN PEARSON | © Nature News Service

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>