Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated system installs pavement markers

12.01.2007
System improves safety for road crews and drivers

On rainy nights in Georgia and across the nation, drivers greatly benefit from small, reflective markers that make roadway lanes more visible. A new automated system for installing the markers is expected to improve safety for workers and drivers.

There are more than three million of these safety devices, called raised pavement markers (RPMs), in service on Georgia highways. They are installed and then need to be replaced about every two years by road crews who consider the task one of the riskiest they face. Workers typically ride on a seat cantilevered off the side of a trailer just inches from highway traffic.

Manual RPM placement is not only risky for personnel, but it is also expensive and time-consuming. A typical RPM placement operation includes four vehicles and a six-person crew. All the vehicles must stop at each marker location, so there is tremendous wear on the equipment and increased fuel use.

The Georgia Department of Transportation (GDOT) believed there was a better way to do it and funded the Georgia Tech Research Institute (GTRI) to develop a first-of-its-kind system capable of automatically placing RPMs along the lane stripes while in motion. After almost three years of research and development, GTRI expects to deliver a prototype system early this year. Because of widespread interest in the system, researchers will present a report on their project on Jan. 23 at the National Research Council's Transportation Research Board Annual Meeting in Washington, D.C.

"The advantages of our automated system are: it's less labor-intensive, it's faster and safer, uses less fuel, and it causes less wear and tear on GDOT equipment," explained project manager Wiley Holcombe, a GTRI senior research engineer.

Engineers conducted the work in two phases. First, they designed an RPM-placement mechanism using pressure-sensitive adhesive and a lane-stripe tracking system. Then, they developed a full-scale, truck-mounted RPM placement system. It is based on a single GDOT-owned truck and includes the lane-stripe tracking system, and electrical power, compressed air, hydraulic power, and adhesive melting and dispensing systems. Some components of the system were off-the-shelf parts, but the GTRI Machine Services shop fabricated most of the custom components for the system, Holcombe notes. After some field-testing, the project resulted in a prototype system capable of dispensing an RPM onto the pavement along with the necessary hot-melt adhesive applied at 380 degrees Fahrenheit while traveling at 5 miles an hour. A pattern-change mechanism can position two placement mechanisms to accommodate any of GDOT's five specified RPM placement patterns, Holcombe explains.

Operation of the system only requires two people. An operator on the back of the truck loads the adhesive melters with adhesive and stacks RPMs in the hoppers from which they are dispensed, depending on the placement pattern. Meanwhile, the driver of the truck must maintain alignment between the stripe pattern on the road and a caster wheel on a boom in front of the truck. Also, the driver touches a computer screen in the cab to indicate to the placement system the new stripe pattern each time the caster wheel crosses a stripe pattern change.

RPMs are dispensed from the hoppers onto a loader arm, which deposits them onto a telescoping slide that connects to a placement mechanism on an attached carriage. The carriage has a 3-foot range of travel and is moved laterally to keep the placement mechanism centered along the road stripe. RPMs are then typically applied about 80 feet apart. It takes about 35 milliseconds from the time the edge of the RPM hits the ground to the time it's flush with the road, Holcombe notes.

"The GDOT's primary use for the automated RPM placement machine will be placing markers on the skip lines for interstate and multi-lane highways," said GDOT spokeswoman Karlene Barron. "These types of routes pose the highest safety risks to our employees and equipment.

"The GDOT also plans to use the system on high-traffic-volume secondary or two-lane roads, when possible," Barron added. "Using the automated system, we will not have to stop at every placement, which will increase safety and productivity plus reduce wear and tear on GDOT equipment. Plus the operator will be high on the back of the machine instead of near ground level."

Six of GDOT's seven district offices have their own RPM placement crews, and there are four other crews that work statewide. GDOT also plans to use the system in the metro Atlanta area.

GTRI's automated raised pavement marking system could be used outside Georgia, though Holcombe explains that its design is most appropriate for Southern states with warmer climates. In regions that get a lot of snow, RPMs must be applied somewhat differently to reduce the risk of damage to RPMs by snow-clearing equipment.

Jane Sanders | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Transportation and Logistics:

nachricht Variable speed limits could reduce crashes, ease congestion in highway work zones
07.06.2017 | University of Missouri-Columbia

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Equipping form with function

23.06.2017 | Information Technology

New design improves performance of flexible wearable electronics

23.06.2017 | Materials Sciences

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>