Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automated system installs pavement markers

12.01.2007
System improves safety for road crews and drivers

On rainy nights in Georgia and across the nation, drivers greatly benefit from small, reflective markers that make roadway lanes more visible. A new automated system for installing the markers is expected to improve safety for workers and drivers.

There are more than three million of these safety devices, called raised pavement markers (RPMs), in service on Georgia highways. They are installed and then need to be replaced about every two years by road crews who consider the task one of the riskiest they face. Workers typically ride on a seat cantilevered off the side of a trailer just inches from highway traffic.

Manual RPM placement is not only risky for personnel, but it is also expensive and time-consuming. A typical RPM placement operation includes four vehicles and a six-person crew. All the vehicles must stop at each marker location, so there is tremendous wear on the equipment and increased fuel use.

The Georgia Department of Transportation (GDOT) believed there was a better way to do it and funded the Georgia Tech Research Institute (GTRI) to develop a first-of-its-kind system capable of automatically placing RPMs along the lane stripes while in motion. After almost three years of research and development, GTRI expects to deliver a prototype system early this year. Because of widespread interest in the system, researchers will present a report on their project on Jan. 23 at the National Research Council's Transportation Research Board Annual Meeting in Washington, D.C.

"The advantages of our automated system are: it's less labor-intensive, it's faster and safer, uses less fuel, and it causes less wear and tear on GDOT equipment," explained project manager Wiley Holcombe, a GTRI senior research engineer.

Engineers conducted the work in two phases. First, they designed an RPM-placement mechanism using pressure-sensitive adhesive and a lane-stripe tracking system. Then, they developed a full-scale, truck-mounted RPM placement system. It is based on a single GDOT-owned truck and includes the lane-stripe tracking system, and electrical power, compressed air, hydraulic power, and adhesive melting and dispensing systems. Some components of the system were off-the-shelf parts, but the GTRI Machine Services shop fabricated most of the custom components for the system, Holcombe notes. After some field-testing, the project resulted in a prototype system capable of dispensing an RPM onto the pavement along with the necessary hot-melt adhesive applied at 380 degrees Fahrenheit while traveling at 5 miles an hour. A pattern-change mechanism can position two placement mechanisms to accommodate any of GDOT's five specified RPM placement patterns, Holcombe explains.

Operation of the system only requires two people. An operator on the back of the truck loads the adhesive melters with adhesive and stacks RPMs in the hoppers from which they are dispensed, depending on the placement pattern. Meanwhile, the driver of the truck must maintain alignment between the stripe pattern on the road and a caster wheel on a boom in front of the truck. Also, the driver touches a computer screen in the cab to indicate to the placement system the new stripe pattern each time the caster wheel crosses a stripe pattern change.

RPMs are dispensed from the hoppers onto a loader arm, which deposits them onto a telescoping slide that connects to a placement mechanism on an attached carriage. The carriage has a 3-foot range of travel and is moved laterally to keep the placement mechanism centered along the road stripe. RPMs are then typically applied about 80 feet apart. It takes about 35 milliseconds from the time the edge of the RPM hits the ground to the time it's flush with the road, Holcombe notes.

"The GDOT's primary use for the automated RPM placement machine will be placing markers on the skip lines for interstate and multi-lane highways," said GDOT spokeswoman Karlene Barron. "These types of routes pose the highest safety risks to our employees and equipment.

"The GDOT also plans to use the system on high-traffic-volume secondary or two-lane roads, when possible," Barron added. "Using the automated system, we will not have to stop at every placement, which will increase safety and productivity plus reduce wear and tear on GDOT equipment. Plus the operator will be high on the back of the machine instead of near ground level."

Six of GDOT's seven district offices have their own RPM placement crews, and there are four other crews that work statewide. GDOT also plans to use the system in the metro Atlanta area.

GTRI's automated raised pavement marking system could be used outside Georgia, though Holcombe explains that its design is most appropriate for Southern states with warmer climates. In regions that get a lot of snow, RPMs must be applied somewhat differently to reduce the risk of damage to RPMs by snow-clearing equipment.

Jane Sanders | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>