Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maths provides answer to airport security puzzle

13.10.2006
High flyers will enjoy faster and safer travel in the future, thanks to mathematicians at The University of Manchester and airport security specialists Rapiscan Systems.

The two parties are joining forces for a £750,000 research project to provide fast, accurate 3D x-ray images of suitcases and baggage.

The project is being funded jointly by the UK-based Rapiscan Systems and the British government's Engineering and Physical Sciences Research Council.

The aim is to maximise the effectiveness of an innovative new 3D scanner developed by Rapiscan Systems' research subsidiary CXR Ltd.

The current breed of airport scanning machines give security staff a flat, one-dimensional view of the contents of a bag, where as the CXR machine uses multiple x-ray sources to provide a more comprehensive and probing 3D image.

Although hospital-style CT scanners have been adapted on a small-scale for baggage scanning, the system is too slow to be widely used in airports.

Academics from The University's School of Mathematics will apply complex maths to ensure data gathered by the CXR scanner is translated quickly and accurately into a dynamic 3D image.

Professor Bill Lionheart of The University Manchester's School of Mathematics said: "CXR is at the cutting edge technologically in a fast-moving field. I am always excited about working on projects like this, where I can tackle a theoretical challenge and see the results being practically employed."

"Hospital-style CT scanners have been used on a small scale for 3D baggage screening, but they are simply to slow for routine use," said Rapiscan Systems' UK Managing Director, Frank Baldwin. "The CXR machine is faster because it uses multiple x-ray sources that are switched, rather than the traditional source on a rotating gantry."

He added that the project represents a perfect partnership of academic expertise and advanced industrial engineering. "Airport security has never been a more critical issue, and we are delighted to have this opportunity to work with Professor Lionheart and his team towards developing this ground-breaking innovation."

According to CXR Director Ed Morton, translating data from multiple sources to provide a 3D image on a monitor screen presents some interesting mathematical challenges.

"We have developed specialised computer hardware and software to process the information, but we need to achieve the fastest, most accurate results possible. We called in experts from the University of Manchester's School of Mathematics to help us develop the novel maths and computer algorithms required."

Professor Lionheart specialises in inverse problems, which typically means working out what is going on inside something from measurements taken outside. He has worked on image reconstruction problems in medical scanning as well as imaging industrial processes such as the flow of molten metal within pipes in a steel mill.

Alex Waddington | EurekAlert!
Further information:
http://www.manchester.ac.uk
http://www.rapiscansystems.com

More articles from Transportation and Logistics:

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Efficient and intelligent: Drones get to grips with planning the delivery of goods
12.07.2017 | Alpen-Adria-Universität Klagenfurt

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>