Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Driverless transport in big cities

08.08.2006
SINTEF is the only Scandinavian partner in the new EU project CityMobil, in which €40 million will help to develop more efficient transport in European cities.

While traffic problems in major cities have been familiar for a long time, the measures needed to deal with them have still to be put into effect. However, in its 6th Framework Programme, the EU is beating the big drum and looking for more efficient transport solutions in big cities, as well as more rational use of motor traffic. New traffic solutions such as completely automated vehicles moving on tracks, cars in defined corridors (cybercars) and bi-modal vehicles that can alternate between automatic and manual control, will aim to reduce traffic queues and pollution.


cybercar


Not science fiction

“This may sound like pure science fiction,” says senior scientist Torgeir Vaa at SINTEF, “but the technology already exists and a number of demonstrations and pilot studies in this area have already been carried out, and these show that the systems do work. In the future that we are talking about, private cars will have to park at the city limits, and other systems will take over in the centre. This means that there will be a need for rapid public transport systems (buses, trains, underground) and personal transport for short distances.

Heathrow Airport, a new exhibition centre in Rome and the Spanish city of Castellón are the sites that have been selected to demonstrate and confirm the viability of automated transport solutions. When the CityMobil project comes to an end in five years, these sites will have installed fully developed automated transport systems, and the first results will have been evaluated.

The Spanish city of Castellón will adopt bimodal buses that are capable of operating both manually and automatically – depending on where they are. In the new exhibition centre in Rome, a fleet of fully automated cybercars will be part of the fleet of vehicles that carry people between the car park, the railway station and the exhibition centre, while Heathrow will have a transit system that will carry people between the terminal and the car park in fully automated vehicles running on tracks.

From private motoring to public transport

Until now, advanced high technology has made most progress in private cars, where the introduction of ADAS (Advanced Driver Assistance Systems) has improved driving comfort. ADAS refers to support systems that prevent the driver from exceeding the speed limit by making the accelerator pedal “heavy”, or that ensure that cars keep a safe distance from the vehicle ahead in a traffic queue.

CityMobil is a prolongation of the EU’s earlier Stardust project, in which SINTEF was also involved, and which built demonstration vehicles with ADAS technology that are in use today in the 0 Vision project in Lillehammer and in Trondheim City Operation.

Now, the EU wishes to focus on public transport, where little has been done, with the exception of a few automated metro systems (Paris, London, Lille) and some recently introduced automated buses and small units (Rouen, Eindhoven).

Trondheim in the reference group

The SINTEF scientists regard it as extremely important to be members of the powerful EU consortium that comprises Europe’s total expertise in this area, with the Netherlands’ TNO in the driving seat, as it were. This large-scale European project consists of five sub-projects, and SINTEF will be involved in two of these, on tasks that include payment systems and safety legislation and regulations.

“Imagine that you arrive at Heathrow and want to get from the car park to the terminal”, say Vaa. “You call up an automatic driverless unit that is circulating and comes to the spot where you are parked. But what about personal protection and safety aspects? What about other people who are standing at the same parking place? Another example concerns driverless vehicles in mixed traffic; who would be responsible in the event of an accident?”

Trondheim has also been selected as a member of a reference group of 15 European cities that will submit relevant problems to CityMobil and test out technological solutions in the course of the project.

“Although Rome, Castellón and Heathrow are the major demonstration sites, plans and concepts will also be set out for a number of other cities, in order to help local authorities make decisions regarding automated transport systems,” says Vaa. “Some of these cities will also benefit from hosting small-scale demonstrations of automated vehicles. This will all depend on how active the individual cities are. Both the City of Trondheim and the Directorate of Public Roads are members of the reference group, and we hope to have the new transport solutions demonstrated in Trondheim and perhaps in other Norwegian cities as part of the project.”

The CityMobil project has a budget of € 40 million and involves 28 partners in 10 different countries. SINTEF’s share is around € 4 million.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>