# Forum for Science, Industry and Business

Search our Site:

## Driving Challenges revealed by new roundabout formulae

01.12.2005

A new formula by mathematicians at the University of Surrey shows an ideal trajectory for a car tackling a typical UK roundabout… something esure’s new analysis shows is rarely achievable!

In the last three years, more than one in every dozen UK car accidents has occurred while motorists approach or drive around roundabouts – with a quarter involving collisions while drivers change lanes - according to new research by internet insurer, esure.com. The annual bill is estimated at over £75m per year.

esure.com’s report, Roundabout Trajectories and Intersections, researched by Dr Anne Skeldon of the Mathematics and Statistics Department at the University of Surrey reveals the complex formulae that underpin roundabout trajectories and manoeuvres. It casts light on why roundabouts can be so potentially hazardous by showing that the ‘textbook’ way of negotiating a roundabout becomes near impossible when a number of cars are using a multi-lane roundabout at a time.

The report describes the formula for the ‘ideal’ path that a driving school might recommend a driver follows to enter and negotiate a roundabout smoothly (above). However, further investigation shows that this formula becomes inadequate very quickly on a typical well-used roundabout.

Dr Anne Skeldon said: “A driving instructor may show a learner how to approach, enter and leave a roundabout smoothly, but plotting the paths of multiple cars on a multi-lane roundabout makes it clear just how difficult negotiating roundabouts can be. There will be numerous points where the paths of different cars intersect - each of which is a potential accident point. In real life, this adds up to danger.

“Cars can only follow textbook routes around a roundabout if there is a precise relationship between their times of entry and speeds. Unfortunately, with modern traffic this is rarely the case.

“The criss-crossing of paths on busy roundabouts turns the desired smooth passage into a much more complex manoeuvre – both mathematically and in terms of the driving skills required. Drivers must be prepared to use their mirrors, switch lanes, signal and brake very precisely to ensure a safe passage.” She added.

To test the research, esure.com also analysed drivers’ reports from 15,000 insurance claims where accidents had occurred on roundabouts. The results show that more than a quarter (25.3%) involved accidents during lane changes - although interestingly 20% occurred while one driver was stationary on - or in the entry lanes of – a roundabout.

Mike Pickard, Head of Risk and Underwriting at esure, said:

“Changing lanes on any road requires care. When you are doing this on a circular road with cars trying to enter, exit and manoeuvre accordingly it is easy to see why a roundabout becomes a recipe for problems.

“Roundabout accidents result in claims totalling over £75m each year, so we would urge people to be especially careful when using them, particularly in bad weather.”

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

### More articles from Transportation and Logistics:

Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

### Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

### Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

### Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

### Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

### Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige