Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wings that sing: sound could stop light planes from stalling

21.09.2005


Sound can be used to control the flow of air over an aircraft’s wing greatly boosting its lift, according to Ian Salmon, a Sydney aerospace engineer who is working on applying this idea to a new generation of light aircraft.



Ian has developed a technique whereby a wing is covered with flexible plastic panels which vibrate when an electric current is passed through them, and produce sound. At a carefully selected frequency, the air passing over the wing can be made to remain more closely attached, increasing the wing’s efficiency.

Ian presented his work to the public and media as part of Fresh Science, a national program that highlights the work of early-career researchers. One of the Fresh Scientists will win a trip to the UK courtesy of the British Council to present their work to the Royal Institution


His technique has already been demonstrated to give a boost in lift of up to 22 per cent compared with a conventional wing. This would allow a smaller wing to be used on aircraft, resulting in lighter weight and reduced fuel consumption.

“Such innovative approaches are needed in this age of greenhouse gas awareness, and rising fuel prices,” he says.

While the theory behind Ian’stechnique is not new, his method of applying sound directly to the wing during flight is. Previous studies used large speakers pointing at a model in a wind tunnel, he says. The results were encouraging, but the sound levels were often painful.

“This new method grew from the desire to carry a lightweight sound source on the aircraft, and to apply sound exactly where it was needed, rather than spraying it everywhere. Obviously one thing we did not want to do was to make aircraft noisier.”

Ian’s approach seems to have paid off. Useful gains have been measured even at barely audible volumes, showing that the amount of energy required is very small.

It’s unlikely, however, that his method will be used on large commercial jets. “The beneficial effects are far more pronounced for small, slow aircraft which fly in conditions where the air’s viscosity, or ‘stickiness’ has more influence on the air’s behaviour.”

Although the kind of sound which is most effective in manipulating airflow is a single-frequency tone, other forms, including music, have shown some effect. “While I’ve not tested a large selection of music, I can say that Spiderbait is more effective than Radiohead,” Ian says.

Ian Salmon works as an Aircraft Development Engineer for Qantas Airways. The research was undertaken at the University of New South Wales as part of a BE Thesis under the supervision of Associate Professor N.A.Ahmed.

Niall Byrne | alfa
Further information:
http://www.scienceinpublic.com/sciencenow/2005/iansalmon/iansalmon.htm

More articles from Transportation and Logistics:

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Efficient and intelligent: Drones get to grips with planning the delivery of goods
12.07.2017 | Alpen-Adria-Universität Klagenfurt

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>