Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wings that sing: sound could stop light planes from stalling

21.09.2005


Sound can be used to control the flow of air over an aircraft’s wing greatly boosting its lift, according to Ian Salmon, a Sydney aerospace engineer who is working on applying this idea to a new generation of light aircraft.



Ian has developed a technique whereby a wing is covered with flexible plastic panels which vibrate when an electric current is passed through them, and produce sound. At a carefully selected frequency, the air passing over the wing can be made to remain more closely attached, increasing the wing’s efficiency.

Ian presented his work to the public and media as part of Fresh Science, a national program that highlights the work of early-career researchers. One of the Fresh Scientists will win a trip to the UK courtesy of the British Council to present their work to the Royal Institution


His technique has already been demonstrated to give a boost in lift of up to 22 per cent compared with a conventional wing. This would allow a smaller wing to be used on aircraft, resulting in lighter weight and reduced fuel consumption.

“Such innovative approaches are needed in this age of greenhouse gas awareness, and rising fuel prices,” he says.

While the theory behind Ian’stechnique is not new, his method of applying sound directly to the wing during flight is. Previous studies used large speakers pointing at a model in a wind tunnel, he says. The results were encouraging, but the sound levels were often painful.

“This new method grew from the desire to carry a lightweight sound source on the aircraft, and to apply sound exactly where it was needed, rather than spraying it everywhere. Obviously one thing we did not want to do was to make aircraft noisier.”

Ian’s approach seems to have paid off. Useful gains have been measured even at barely audible volumes, showing that the amount of energy required is very small.

It’s unlikely, however, that his method will be used on large commercial jets. “The beneficial effects are far more pronounced for small, slow aircraft which fly in conditions where the air’s viscosity, or ‘stickiness’ has more influence on the air’s behaviour.”

Although the kind of sound which is most effective in manipulating airflow is a single-frequency tone, other forms, including music, have shown some effect. “While I’ve not tested a large selection of music, I can say that Spiderbait is more effective than Radiohead,” Ian says.

Ian Salmon works as an Aircraft Development Engineer for Qantas Airways. The research was undertaken at the University of New South Wales as part of a BE Thesis under the supervision of Associate Professor N.A.Ahmed.

Niall Byrne | alfa
Further information:
http://www.scienceinpublic.com/sciencenow/2005/iansalmon/iansalmon.htm

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>