Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wings that sing: sound could stop light planes from stalling

21.09.2005


Sound can be used to control the flow of air over an aircraft’s wing greatly boosting its lift, according to Ian Salmon, a Sydney aerospace engineer who is working on applying this idea to a new generation of light aircraft.



Ian has developed a technique whereby a wing is covered with flexible plastic panels which vibrate when an electric current is passed through them, and produce sound. At a carefully selected frequency, the air passing over the wing can be made to remain more closely attached, increasing the wing’s efficiency.

Ian presented his work to the public and media as part of Fresh Science, a national program that highlights the work of early-career researchers. One of the Fresh Scientists will win a trip to the UK courtesy of the British Council to present their work to the Royal Institution


His technique has already been demonstrated to give a boost in lift of up to 22 per cent compared with a conventional wing. This would allow a smaller wing to be used on aircraft, resulting in lighter weight and reduced fuel consumption.

“Such innovative approaches are needed in this age of greenhouse gas awareness, and rising fuel prices,” he says.

While the theory behind Ian’stechnique is not new, his method of applying sound directly to the wing during flight is. Previous studies used large speakers pointing at a model in a wind tunnel, he says. The results were encouraging, but the sound levels were often painful.

“This new method grew from the desire to carry a lightweight sound source on the aircraft, and to apply sound exactly where it was needed, rather than spraying it everywhere. Obviously one thing we did not want to do was to make aircraft noisier.”

Ian’s approach seems to have paid off. Useful gains have been measured even at barely audible volumes, showing that the amount of energy required is very small.

It’s unlikely, however, that his method will be used on large commercial jets. “The beneficial effects are far more pronounced for small, slow aircraft which fly in conditions where the air’s viscosity, or ‘stickiness’ has more influence on the air’s behaviour.”

Although the kind of sound which is most effective in manipulating airflow is a single-frequency tone, other forms, including music, have shown some effect. “While I’ve not tested a large selection of music, I can say that Spiderbait is more effective than Radiohead,” Ian says.

Ian Salmon works as an Aircraft Development Engineer for Qantas Airways. The research was undertaken at the University of New South Wales as part of a BE Thesis under the supervision of Associate Professor N.A.Ahmed.

Niall Byrne | alfa
Further information:
http://www.scienceinpublic.com/sciencenow/2005/iansalmon/iansalmon.htm

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>