Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne drones, mimicking gulls, alter wing shape for agility

24.08.2005


On Aug. 11, 2005, Rick Lind, a University of Florida assistant professor of aerospace engineering, examines a prototype of a tiny surveillance airplane that can change shape during flight. Mimicking seagulls, the plane’s wings can turn up, level out, and turn down, enabling it to become more agile or more stable as desired. The plane is a step toward tiny military drones that can soar over cities and dive between buildings to shoot surveillance photos, test for chemical or biological weapons or perform other tasks.


The military’s next generation of airborne drones won’t be just small and silent – they’ll also dive between buildings, zoom under overpasses and land on apartment balconies.

At least, that’s what University of Florida engineers are working toward.

Funded by the U.S. Air Force and NASA, UF aerospace engineers have built prototypes of 6-inch- to 2-foot- drones capable of squeezing in and out of tight spots in cities — like tiny urban stunt planes. Their secret: seagull-inspired wings that “morph,” or change shape, dramatically during flight, transforming the planes’ stability and agility at the touch of a button on the operator’s remote control.



“If you fly in the urban canyon, through alleys, around parking garages and between buildings, you need to do sharp turns, spins and dives,” said Rick Lind, a UF assistant professor of mechanical and aerospace engineering who heads the project. “That means you need to change the shape of the aircraft during flight.”

The Air Force’s Predator Unmanned Aerial Vehicle and other military drones have been key to military operations in Iraq and Afghanistan. But the drones, which shoot surveillance images and sometimes also fire missiles, are designed to soar high above the landscape. That limits their ability to snoop up close in the windows, alleys, corners and other urban crevices of the tight neighborhoods that define many cities, Lind said.

The UF planes are intended to correct this deficiency and add new capabilities, such as landing in tight spots during a mission. That could be useful, for example, if the planes, equipped with sensors for biological or chemical weapons, were investigating single buildings where the weapons were suspected of being made, Lind said.

Lind came to UF in 2001 from NASA, where one of his last projects involved modifying the wings of an F-18 fighter to change shape during flight. He drew on this research for the drones, but he also had another source of inspiration: the Wright brothers’ first plane.

As Lind noted, unlike later planes, the wings of that biplane had no flaps, or ailerons. Instead, the brothers controlled the plane’s roll by using cables to twist the shape of the wings up and down during flight. Birds also change wing shape.

“Birds morph all the time, and they’re very agile,” Lind said. “There’s no reason we can’t achieve the same control that birds achieve.”

The first prototype in the 3-year-old UF effort copied the Wright Brothers’ approach by using tiny motors to twist threads and move flexible wings. A traditional rudder and elevators on the tail, meanwhile, control up-and-down and side-to-side motions.

The downfall of the thread approach was that the wings could only be pulled down, not pushed up, which limited their capabilities. The next version replaced the threads with metal rods, allowing both up and down motion and improving performance.

The latest version, built by mechanical and aerospace engineering doctoral student Mujahid Abdulrahim, goes a step further. Impressed by seagulls’ ability to hover, dive and climb rapidly, Abdulrahim photographed the gulls close-up during flight. The images showed the gulls’ wings flexing at both their shoulder and elbow joints as they altered flight patterns.

Abdulrahim added this ability in the new prototype, with promising results. With the wings mimicking the gulls’ elbow in the down position, the plane loses stability but becomes highly maneuverable. With the wings in the elbow straight position, it glides well. And with the wings in the elbow up position, it’s highly controllable and easy to land.

Motors can transform the wings from the down to the up position in flight in 12 seconds, “fast enough to use in a city landscape,” Abdelrahim said.

The bird-like prototypes are strikingly maneuverable, capable, for example, of completing three, 360-degree rolls in one second. (An F-16 fighter jet can manage at least one roll per second, but three rolls would produce excessive gravity force, killing the pilot). Flying in videotaped demonstrations, they are so agile they appear out of control at times, and indeed the planes require considerable talent by the remote control pilot.

The Air Force and NASA have so far provided about $3 million for the UF research, a substantial portion of which is aimed at addressing that issue by making the planes easier to fly. The engineers’ goal is to make the planes autonomous, or flyable without human pilots. That won’t be easy, but it would give the planes remarkable utility. ”If the vehicle can search an area by itself, you have almost instantaneous response to what’s being threatened,” Lind said.

Lind, Abdulrahim and other researchers involved in the effort have authored nine academic papers on the research, including two on the gull-wing aircraft.

Rick Lind | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>