Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne drones, mimicking gulls, alter wing shape for agility

24.08.2005


On Aug. 11, 2005, Rick Lind, a University of Florida assistant professor of aerospace engineering, examines a prototype of a tiny surveillance airplane that can change shape during flight. Mimicking seagulls, the plane’s wings can turn up, level out, and turn down, enabling it to become more agile or more stable as desired. The plane is a step toward tiny military drones that can soar over cities and dive between buildings to shoot surveillance photos, test for chemical or biological weapons or perform other tasks.


The military’s next generation of airborne drones won’t be just small and silent – they’ll also dive between buildings, zoom under overpasses and land on apartment balconies.

At least, that’s what University of Florida engineers are working toward.

Funded by the U.S. Air Force and NASA, UF aerospace engineers have built prototypes of 6-inch- to 2-foot- drones capable of squeezing in and out of tight spots in cities — like tiny urban stunt planes. Their secret: seagull-inspired wings that “morph,” or change shape, dramatically during flight, transforming the planes’ stability and agility at the touch of a button on the operator’s remote control.



“If you fly in the urban canyon, through alleys, around parking garages and between buildings, you need to do sharp turns, spins and dives,” said Rick Lind, a UF assistant professor of mechanical and aerospace engineering who heads the project. “That means you need to change the shape of the aircraft during flight.”

The Air Force’s Predator Unmanned Aerial Vehicle and other military drones have been key to military operations in Iraq and Afghanistan. But the drones, which shoot surveillance images and sometimes also fire missiles, are designed to soar high above the landscape. That limits their ability to snoop up close in the windows, alleys, corners and other urban crevices of the tight neighborhoods that define many cities, Lind said.

The UF planes are intended to correct this deficiency and add new capabilities, such as landing in tight spots during a mission. That could be useful, for example, if the planes, equipped with sensors for biological or chemical weapons, were investigating single buildings where the weapons were suspected of being made, Lind said.

Lind came to UF in 2001 from NASA, where one of his last projects involved modifying the wings of an F-18 fighter to change shape during flight. He drew on this research for the drones, but he also had another source of inspiration: the Wright brothers’ first plane.

As Lind noted, unlike later planes, the wings of that biplane had no flaps, or ailerons. Instead, the brothers controlled the plane’s roll by using cables to twist the shape of the wings up and down during flight. Birds also change wing shape.

“Birds morph all the time, and they’re very agile,” Lind said. “There’s no reason we can’t achieve the same control that birds achieve.”

The first prototype in the 3-year-old UF effort copied the Wright Brothers’ approach by using tiny motors to twist threads and move flexible wings. A traditional rudder and elevators on the tail, meanwhile, control up-and-down and side-to-side motions.

The downfall of the thread approach was that the wings could only be pulled down, not pushed up, which limited their capabilities. The next version replaced the threads with metal rods, allowing both up and down motion and improving performance.

The latest version, built by mechanical and aerospace engineering doctoral student Mujahid Abdulrahim, goes a step further. Impressed by seagulls’ ability to hover, dive and climb rapidly, Abdulrahim photographed the gulls close-up during flight. The images showed the gulls’ wings flexing at both their shoulder and elbow joints as they altered flight patterns.

Abdulrahim added this ability in the new prototype, with promising results. With the wings mimicking the gulls’ elbow in the down position, the plane loses stability but becomes highly maneuverable. With the wings in the elbow straight position, it glides well. And with the wings in the elbow up position, it’s highly controllable and easy to land.

Motors can transform the wings from the down to the up position in flight in 12 seconds, “fast enough to use in a city landscape,” Abdelrahim said.

The bird-like prototypes are strikingly maneuverable, capable, for example, of completing three, 360-degree rolls in one second. (An F-16 fighter jet can manage at least one roll per second, but three rolls would produce excessive gravity force, killing the pilot). Flying in videotaped demonstrations, they are so agile they appear out of control at times, and indeed the planes require considerable talent by the remote control pilot.

The Air Force and NASA have so far provided about $3 million for the UF research, a substantial portion of which is aimed at addressing that issue by making the planes easier to fly. The engineers’ goal is to make the planes autonomous, or flyable without human pilots. That won’t be easy, but it would give the planes remarkable utility. ”If the vehicle can search an area by itself, you have almost instantaneous response to what’s being threatened,” Lind said.

Lind, Abdulrahim and other researchers involved in the effort have authored nine academic papers on the research, including two on the gull-wing aircraft.

Rick Lind | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>