Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airborne drones, mimicking gulls, alter wing shape for agility

24.08.2005


On Aug. 11, 2005, Rick Lind, a University of Florida assistant professor of aerospace engineering, examines a prototype of a tiny surveillance airplane that can change shape during flight. Mimicking seagulls, the plane’s wings can turn up, level out, and turn down, enabling it to become more agile or more stable as desired. The plane is a step toward tiny military drones that can soar over cities and dive between buildings to shoot surveillance photos, test for chemical or biological weapons or perform other tasks.


The military’s next generation of airborne drones won’t be just small and silent – they’ll also dive between buildings, zoom under overpasses and land on apartment balconies.

At least, that’s what University of Florida engineers are working toward.

Funded by the U.S. Air Force and NASA, UF aerospace engineers have built prototypes of 6-inch- to 2-foot- drones capable of squeezing in and out of tight spots in cities — like tiny urban stunt planes. Their secret: seagull-inspired wings that “morph,” or change shape, dramatically during flight, transforming the planes’ stability and agility at the touch of a button on the operator’s remote control.



“If you fly in the urban canyon, through alleys, around parking garages and between buildings, you need to do sharp turns, spins and dives,” said Rick Lind, a UF assistant professor of mechanical and aerospace engineering who heads the project. “That means you need to change the shape of the aircraft during flight.”

The Air Force’s Predator Unmanned Aerial Vehicle and other military drones have been key to military operations in Iraq and Afghanistan. But the drones, which shoot surveillance images and sometimes also fire missiles, are designed to soar high above the landscape. That limits their ability to snoop up close in the windows, alleys, corners and other urban crevices of the tight neighborhoods that define many cities, Lind said.

The UF planes are intended to correct this deficiency and add new capabilities, such as landing in tight spots during a mission. That could be useful, for example, if the planes, equipped with sensors for biological or chemical weapons, were investigating single buildings where the weapons were suspected of being made, Lind said.

Lind came to UF in 2001 from NASA, where one of his last projects involved modifying the wings of an F-18 fighter to change shape during flight. He drew on this research for the drones, but he also had another source of inspiration: the Wright brothers’ first plane.

As Lind noted, unlike later planes, the wings of that biplane had no flaps, or ailerons. Instead, the brothers controlled the plane’s roll by using cables to twist the shape of the wings up and down during flight. Birds also change wing shape.

“Birds morph all the time, and they’re very agile,” Lind said. “There’s no reason we can’t achieve the same control that birds achieve.”

The first prototype in the 3-year-old UF effort copied the Wright Brothers’ approach by using tiny motors to twist threads and move flexible wings. A traditional rudder and elevators on the tail, meanwhile, control up-and-down and side-to-side motions.

The downfall of the thread approach was that the wings could only be pulled down, not pushed up, which limited their capabilities. The next version replaced the threads with metal rods, allowing both up and down motion and improving performance.

The latest version, built by mechanical and aerospace engineering doctoral student Mujahid Abdulrahim, goes a step further. Impressed by seagulls’ ability to hover, dive and climb rapidly, Abdulrahim photographed the gulls close-up during flight. The images showed the gulls’ wings flexing at both their shoulder and elbow joints as they altered flight patterns.

Abdulrahim added this ability in the new prototype, with promising results. With the wings mimicking the gulls’ elbow in the down position, the plane loses stability but becomes highly maneuverable. With the wings in the elbow straight position, it glides well. And with the wings in the elbow up position, it’s highly controllable and easy to land.

Motors can transform the wings from the down to the up position in flight in 12 seconds, “fast enough to use in a city landscape,” Abdelrahim said.

The bird-like prototypes are strikingly maneuverable, capable, for example, of completing three, 360-degree rolls in one second. (An F-16 fighter jet can manage at least one roll per second, but three rolls would produce excessive gravity force, killing the pilot). Flying in videotaped demonstrations, they are so agile they appear out of control at times, and indeed the planes require considerable talent by the remote control pilot.

The Air Force and NASA have so far provided about $3 million for the UF research, a substantial portion of which is aimed at addressing that issue by making the planes easier to fly. The engineers’ goal is to make the planes autonomous, or flyable without human pilots. That won’t be easy, but it would give the planes remarkable utility. ”If the vehicle can search an area by itself, you have almost instantaneous response to what’s being threatened,” Lind said.

Lind, Abdulrahim and other researchers involved in the effort have authored nine academic papers on the research, including two on the gull-wing aircraft.

Rick Lind | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>