Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite keeps railway safety and efficiency on track

22.08.2005


European researchers have developed an innovative satellite-based control and command system for low-density railway lines that could herald a minor revolution in train transportation management.



“There is a real need for this technology,” says LOCOPROL project coordinator Michel Rousseau. “Existing command-control systems adapted for medium traffic density lines or the future ERTMS/ETCS [European Rail Traffic Management System/ European Train Control System] system dedicated to high speed and/or high-density traffic railway lines are too expensive to be used on railway lines with low and very low traffic density.”

He notes that as a consequence, many low-density traffic lines (LTDL) in the EU, Eastern Europe, the US and in developing countries are still equipped with ageing and dangerous human-based safety equipment with high maintenance costs, keeping the capacity of these lines to a very low threshold.


“We saw the need to develop an innovative and cost-effective system for low-density traffic lines based on new available technologies such as satellite location. The concept is to offer the same level of safety as high-density lines and enhancing the efficiency of these lines in order for rail transport to become more attractive,” he says.

A new sensor configuration developed by LOCOPROL was successfully tested in two test tracks in Belgium and in France during the project, says Rousseau.

Satellite-based positioning is the heart of the LOCOPROL system, emphasises Rousseau. An innovative positioning algorithm has been developed to provide train-borne signalling equipment with a failsafe interval of the train position, by making use of satellite range signals coming from a GNSS receiver. This ‘1D algorithm’ is so-called as it uses one degree of freedom movement.

The most recent tests carried out on the Gembloux-Jemeppe link in Belgium, a typical low-density line in a hilly environment with varying satellite visibility, were devoted to the 1D satellite positioning sub-system, intended to be used as the means to locate the trains in the failsafe LOCOPROL signalling system.

“The tests demonstrated that the combination of wheel sensors and GNSS sensors associated with the 1D algorithm developed in the frame of the project allows a level of performance at least compatible with LDTL requirements at a significantly reduced life cycle cost,” says Rousseau.

The beauty of the system is that the level of safety will be the same as on high-density lines, while the efficiency of these LDTL will be enhanced through reductions in operating and maintenance costs, helping to make railway transport more attractive, he says.

Another bonus is the fact that the system can be readily upgraded to cope with increased traffic or other signalling changes on a line.

In its basic configuration as implemented in the Nice-Digne line in France, the equipment is limited to the control centre and to the train-borne equipment.

To increase the performance of the line, the points can be upgraded with control or command sub-systems that can be controlled by the LOCOPROL system through an object controller installed in the station. In the same way, level crossing control can be handled by the LOCOPROL system, points out Rousseau.

The feedback from railway operators involved in the trials was overwhelmingly positive about the possibilities for providing enhanced line safety and efficiency at lower costs with the LOCOPROL solution.

“The trials demonstrated that it is really possible to operate a low traffic density line with LOCOPROL,” says Rousseau. “The availability of the system depends on the visibility of satellites. With GPS this availability is a little bit low in some areas but it is clear that the problem will be solved by the new GALILEO constellation working together with GNSS,” he says.

“The market for LOCOPROL is characterised by single track lines with simple stations and a low density of traffic typically in the range of 1-2 trains per hour. Large opportunities for the system have been identified for freight, passenger and mixed lines,” he says.

Among freight networks, he cites the mining lines in South Africa and Brazil as potentially ripe for commercial exploitation, while passenger lines such as the secondary network in Nordic countries, Germany and the United Kingdom also hold exciting possibilities.

“The lines in eastern European countries represent substantial potential as the infrastructures of these countries undergo modernisation. The strong growth in China and the consequent demand for a more efficient railway will also offer rich opportunities to exploit the LOCOPROL system,” he ends.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>