Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellite keeps railway safety and efficiency on track

22.08.2005


European researchers have developed an innovative satellite-based control and command system for low-density railway lines that could herald a minor revolution in train transportation management.



“There is a real need for this technology,” says LOCOPROL project coordinator Michel Rousseau. “Existing command-control systems adapted for medium traffic density lines or the future ERTMS/ETCS [European Rail Traffic Management System/ European Train Control System] system dedicated to high speed and/or high-density traffic railway lines are too expensive to be used on railway lines with low and very low traffic density.”

He notes that as a consequence, many low-density traffic lines (LTDL) in the EU, Eastern Europe, the US and in developing countries are still equipped with ageing and dangerous human-based safety equipment with high maintenance costs, keeping the capacity of these lines to a very low threshold.


“We saw the need to develop an innovative and cost-effective system for low-density traffic lines based on new available technologies such as satellite location. The concept is to offer the same level of safety as high-density lines and enhancing the efficiency of these lines in order for rail transport to become more attractive,” he says.

A new sensor configuration developed by LOCOPROL was successfully tested in two test tracks in Belgium and in France during the project, says Rousseau.

Satellite-based positioning is the heart of the LOCOPROL system, emphasises Rousseau. An innovative positioning algorithm has been developed to provide train-borne signalling equipment with a failsafe interval of the train position, by making use of satellite range signals coming from a GNSS receiver. This ‘1D algorithm’ is so-called as it uses one degree of freedom movement.

The most recent tests carried out on the Gembloux-Jemeppe link in Belgium, a typical low-density line in a hilly environment with varying satellite visibility, were devoted to the 1D satellite positioning sub-system, intended to be used as the means to locate the trains in the failsafe LOCOPROL signalling system.

“The tests demonstrated that the combination of wheel sensors and GNSS sensors associated with the 1D algorithm developed in the frame of the project allows a level of performance at least compatible with LDTL requirements at a significantly reduced life cycle cost,” says Rousseau.

The beauty of the system is that the level of safety will be the same as on high-density lines, while the efficiency of these LDTL will be enhanced through reductions in operating and maintenance costs, helping to make railway transport more attractive, he says.

Another bonus is the fact that the system can be readily upgraded to cope with increased traffic or other signalling changes on a line.

In its basic configuration as implemented in the Nice-Digne line in France, the equipment is limited to the control centre and to the train-borne equipment.

To increase the performance of the line, the points can be upgraded with control or command sub-systems that can be controlled by the LOCOPROL system through an object controller installed in the station. In the same way, level crossing control can be handled by the LOCOPROL system, points out Rousseau.

The feedback from railway operators involved in the trials was overwhelmingly positive about the possibilities for providing enhanced line safety and efficiency at lower costs with the LOCOPROL solution.

“The trials demonstrated that it is really possible to operate a low traffic density line with LOCOPROL,” says Rousseau. “The availability of the system depends on the visibility of satellites. With GPS this availability is a little bit low in some areas but it is clear that the problem will be solved by the new GALILEO constellation working together with GNSS,” he says.

“The market for LOCOPROL is characterised by single track lines with simple stations and a low density of traffic typically in the range of 1-2 trains per hour. Large opportunities for the system have been identified for freight, passenger and mixed lines,” he says.

Among freight networks, he cites the mining lines in South Africa and Brazil as potentially ripe for commercial exploitation, while passenger lines such as the secondary network in Nordic countries, Germany and the United Kingdom also hold exciting possibilities.

“The lines in eastern European countries represent substantial potential as the infrastructures of these countries undergo modernisation. The strong growth in China and the consequent demand for a more efficient railway will also offer rich opportunities to exploit the LOCOPROL system,” he ends.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>