Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New easy-read road signs based on PSU research

10.12.2004


Example of a sign near Penn State that uses the new Clearview road sign typeface based on University research. Credit: Penn State, Greg Grieco


New easier-to-read road signs based on Penn State research are appearing across the U.S. and Canada.

The Federal Highway Administration (FHWA) has approved the interim use of a new typeface, called Clearview, for signs on all public streets, highways, and byways. New signs bearing Clearview, instead of the old familiar Highway Gothic, already appear on Routes 322 and 80 in Pennsylvania near Penn State, on highways throughout Texas and in Canada.

A decade in development, the Clearview Typeface System for traffic control devices was developed by a design team that included Dr. Martin Pietrucha, a civil engineer and director of the University’s Science, Technology and Society program, and Philip Garvey, research associate at Penn State’s Pennsylvania Transportation Institute.



The new Clearview road sign typeface is so much more legible than the existing typeface that it gives drivers going 55 mph added seconds to respond to directions.

Clearview offers a 20 percent improvement in legibility and recognition with the same size sign as currently used. Replacing signs bearing the 50-year-old Standard Highway Sign Alphabet with new Clearview signs should not cause driver confusion or increase costs, the two Penn State researchers say.

An interdisciplinary team including perceptual psychologists, traffic engineers, type designers, graphic designers, vision experts and optics engineers developed Clearview. Their goal was to improve road sign legibility and recognition at night, especially for older drivers.
Pietrucha says, "Clearview achieves its greater legibility by using upper and lower case with initial capital letters, special spacing based on how a viewer reads a legend from an extended distance and by eliminating nighttime overglow or halo-ing."

He explains that overglow occurs when a car’s headlights shine directly on a sign on which letters have been formed from highly reflective material. The letters become, momentarily, so bright that they lose their familiar shape and look instead like blobs. Overglow is especially troublesome for those over age 65.

Clearview retains its readability, despite overglow, because the letters have been designed to have more interior space. The B, e, g and a, for example, have more space inside the letters so that when halo-ing occurs, the overglow doesn’t entirely fill them up.

Garvey notes that Clearview’s design is based on the results of six formal studies and dozens of field reviews using younger drivers as well as older ones in both day and night driving conditions.

"Inadequate signing can be a contributing factor in roadway crashes," he adds. "Although Clearview was intended to help older drivers, our studies show that the appreciable gain in reaction time provided by the new typeface will be achieved by drivers regardless of age."

The Clearview Typeface system for traffic control devices was developed by a design team that included Donald Meeker and Christopher O’Hara of Meeker & Associates Inc., James Montalbano of Terminal Design Inc., and Pietrucha and Garvey, with supporting research by Dr. Gene Hawkins and Dr. Paul Carlson of the Texas Transportation Institute (TTI) sponsored by TxDOT. Susan T. Chrysler of TTI provided consultation on experimental design.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>