Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-Speed Catamaran Could Ease Road Congestion

03.09.2004


A new high-speed cargo catamaran could significantly reduce the number of lorry journeys on European roads thanks to a grant of almost one million euros from the EU’s Framework Programme.



PACSCAT (Partial Air Cushion Supported Catamaran) is a 30 month project to evaluate the possibility of using high-speed river transport to help deal with the rapid growth in freight movement throughout Europe. The capacity of each catamaran will be around 2,000 tonnes - the equivalent of 45 truck loads – and it will be able to travel at almost 25 miles (37km) an hour, making it a much more realistic alternative to road transport than anything else currently available.

“With an already congested land-based transport infrastructure throughout most European countries the expansion of waterborne transport is essential”, says project co-ordinator Jonathan Williams. “The objective of PACSCAT is to develop and evaluate the catamaran to allow operation on inland waterways without the draught restrictions of conventional vessels. The vessel draught can be adjusted from 2.5 metres to as low as 1.5 metres to cope with shallow water and air draught can be similarly altered to overcome bridge height limitations.


“Although the initial development will focus on transport along two of the major European rivers, the Rhine and Danube, we are hopeful that the catamaran can be adapted to make it a viable option on many other waterways.

The air cushion on the catamaran is contained between the sidehulls and end seals, and is generated by installed lift fans. The vessel will be designed to operate using existing berthing and loading facilities on the Rhine and Danube.

“Developing sustainable transport infrastructure is a key element of the Framework Funding programme”, says Cliff Funnell, FP6UK National Contact Point for Surface Transport (Maritime). “If we can move a significant amount of freight transport from the roads on to our waterways we will see a reduction in both congestion and pollution. Rivers and canals used to carry a great deal of our freight but the lack of speed made it less and less viable. Now we have the chance to make it work again and this has got to be to our long-term benefit.”

“The current Framework Programme (FP6) runs until 2006 and organisations wanting free, easy to access, information on the €19bn of funding available to support internationally collaborative R&D should log on to http://fp6uk.ost.gov.uk or call central telephone support on 0870 600 6080.”

Led by the University of Southampton with management assistance from Marinetech South Ltd, the PACSCAT project is being carried out by a European consortium of 14 partners. They span the complete value chain from vessel design to operation, including interface with key regulatory authorities. The PACSCAT concept was developed by UK naval architects IMAA Ltd, who are the technical coordinators of the current project.

Dave Sanders | alfa
Further information:
http://fp6uk.ost.gov.uk

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>