Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology Could Transform Every Train into A High Speed Cracked Rail Detector

05.07.2004


Researchers in the University of Warwick’s Department of Physics have developed a novel non-contact method of using ultrasound to detect and measure cracks and flaws in rail track – particularly gauge corner cracking - that has the potential to simply be attached to a normal passenger or freight train travelling at high speeds.

Current ultrasonic techniques for detecting defects only work at much slower speeds (around 20-30 miles an hour). A handful of special trains have been created using conventional contacting ultrasonic techniques but there are severe limitations as to when and where they can be used without disrupting the network. The new technology, developed by Dr Steve Dixon, Dr Rachel Edwards and Mr John Reed at the University of Warwick, makes use of a particular form of ultrasonics – a “low frequency wide band Rayleigh wave” to produce a crack testing technique that works at high speed and could transform every train in the country into part of a 24 hour network of rail crack detectors.

The researchers have taken pairs of “electromagnetic acoustic transducers” (EMATS) which generate and detect the “low frequency wide band Rayleigh wave” on the rail without touching the rail. This Rayleigh wave travels along the surface of the rail head, along the length of the rail, penetrating down to a depth of several millimetres. They simultaneously use a wide range of frequencies within a single Rayleigh wave pulse (hence their description of it as a “wide band Rayleigh Wave”) as different frequencies allow penetration of the rail to a range of precise measurable depths.



When the wave, which travels along the surface of the length of the rail at 3000 metres per second, interacts with a crack the different frequency components of the signal are blocked to differing degrees, or are reflected from the crack. The researchers can determine the exact location of a crack by observing the loss of signal as it is blocked by the crack or, at lower speeds, by observing the sudden enhancement in signal created by the interference of waves reflected back from the crack with fresh waves generated by the first EMAT.

Not only can the researchers pinpoint the location of cracks using this technique – they can also ascertain the exact depth of the crack by observing how the frequency content of the Rayleigh wave changes as it moves through a region containing a crack.

The researchers also have had some results that suggest the technique could also be used to get some sense of the change in microstructure and stress levels of a section of track and thus identify sections of track that are more likely to crack or fail – but more testing is required on a greater range of rails before they can be sure of this additional benefit of the technology.

The research has just been published in the June issue of the journal of the British Institute of Non Destructive Testing “Insight” and will also be presented on Tuesday 6th July at the 7th International Railway Engineering conference at the Commonwealth Institute in London.

Dr Steve Dixon said: “Given the will and funding this technology could transform every train in the country into an army of highly sophisticated rail monitors with zero disruption to the rail network”.

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>