Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PRIME time for traffic incident management

09.06.2004


More traffic, more incidents; an urban traffic manager’s nightmare. Yet tried and tested solutions to predict, detect, verify, and respond to such incidents are a dream come true.



The solutions were the result of research undertaken by the IST programme-funded PRIME project. The objective of PRIME, an acronym for Prediction of Congestion and Incidents In Real Time for Intelligent Incident Management and Emergency Traffic Management, was to develop innovative methods to improve the dynamic prediction, detection, verification, and response to incidents. This information could then be transmitted to an Urban Traffic Control (UTC) system, where control room operators processes it and issue a warning to drivers either through in-vehicle systems, Variable Message Signs, or via a public radio broadcast. The UTC system could feed this critical information to Incident Response teams and the appropriate response actions could take place, such as blocking a road and sending emergency vehicles on location.

Fourteen project partners in five countries - Spain, Greece, the UK, Germany and The Netherlands - developed prototype components by communicating and exchanging elements of design and code by e-mail and at project meetings. Eventually it was necessary to pull all of the work together, which was done at a workshop where components from Spain, Greece and the UK were successfully integrated and tested through a common database.


A successful prototype

One such prototype has led to RAID (Remote Automatic Incident Detection), a direct product of the research undertaken by PRIME. The RAID system is being further developed by project partner Siemens Traffic Controls Ltd., the UK market leader in traffic technology and solutions.

PRIME’s coordinator Dr Tom Cherrett from the University of Southampton’s Transportation Research Group explains: "The main advantage of the system is that it uses an existing data source to provide additional information on network conditions to aid the control room operator in coordinating traffic."

RAID allows the control room operator to set and adjust the alarm trigger thresholds for each detector in the network and, because it is a single station algorithm, it does not require the output from adjacent up and down stream detectors before being able to trigger an alarm.

The system produces incident text messages. It then notifies the operator of potential incidents through an interactive map display developed by Siemens Traffic Controls Ltd. This graphical user interface, developed under the PRIME project, has been developed for RAID using the UTC map editor facility. This allows the operator to link RAID to existing maps of the urban area controlled by UTC. RAID incidents appear in the form of flashing detectors on the map.

Tested and adopted in Southampton

Under the PRIME project, RAID was tested on road sections with and without signals in Southampton. The online test took place for 167 consecutive days between 17 May 2001 until 31 October 2001, between 07:00 and 19:00 daily and involved some 74 detectors strategically placed along the A33 Bassett Avenue and A35 Winchester Road. All incidents detected by RAID were recorded by the control room operators in a database. (Incidents were defined as vehicle-on-vehicle impacts, vehicle breakdowns, illegal parking or unloading and emergency works.)

The RAID detection rate of verified incidents on the two roads was 69 per cent and 92 per cent respectively. This means that 22 of the 32 incidents on the A33 Bassett Avenue and 45 of the 49 incidents on the A35 Winchester Road were detected. On A33 there were 100 false alarms, or 55 per cent of the A33 Bassett Avenue RAID detections were not incidents and were caused by abnormally heavy congestion attributed to bad weather, special events and football matches.

These warnings were beneficial to the control room operators as one in every 3.8 of them resulted in either a Variable Message Sign strategy to display electronic messages to drivers on the road such as long delays expected or accident ahead, or alternatively a radio traffic bulletin being issued by the control room operator to the general public.

"Siemens Traffic Controls Ltd. is currently developing RAID further. The system has been adopted by Southampton City Council and testing is ongoing in Essex," says Cherrett.

PRIME elsewhere in Europe

Other project participants have also been acting on the results from PRIME. Based on its findings and on other incident management projects, TNO, the Netherlands Organisation for Applied Scientific Research, is now interested in fully incorporating incident management in dynamic traffic management, and in assessing the effects on traffic safety. PRIME’s incident management experiences and results from PRIME’s estimation of incident probability provided a good starting point.

TNO is also using the PRIME experiences for emergency planning, working with regional authorities and the Dutch National Police Agency. For example it led to TNO’s model weighing the costs and benefits of reduced drive times of the Dutch emergency services on their main road network; a clear illustration of the ways in which incident management can contribute significantly to reducing the costs of incidents and related congestion.

In Greece, PRIME was applied to the Attiki Odos motorway site, allowing a second phase of rigorous testing. The hope is that PRIME’s incident management methods will be incorporated within the motorway incident management structure when it is next updated.

Machine vision opens the road to new applications

Machine vision was another facet of PRIME’s incident management solution. Project partner FORTH worked on further improving the PRIME machine vision system, including the ability to transform 3-dimensional road images to 2-dimensional ones, thus facilitating detection. The system incorporates a 360-degree panoramic camera that reduces the amount of hardware needed on the road. The system was tested with 27 video clips from Southampton and Barcelona. It was finally installed and tested on busy urban roads in the Athens Olympic Ring.

Another Greek partner, KION, has shared some of PRIME’s findings on the machine vision database structure with ATS, a collaborating company in Athens. The two companies worked together to develop methods for opening the incident management machine vision database to new applications through XML and other ways.

ATS will also provide a number of machine vision units for incident management to be installed in time for this summer’s Olympics.

Given such success, others are starting to take note. Interest is being expressed across the Atlantic where Yorgos Stephanedes, the PRIME Technical Manager, has been invited to present the PRIME findings at a US tour, beginning with Purdue University in April 2004.

Contact:
Dr Tom Cherrett
Transportation Research Group
School of Civil Engineering and the Environment
University of Southampton
Highfield
SOUTHAMPTON
SO17 1BJ
United Kingdom
Email: T.J.Cherrett@soton.ac.uk
Source: Based on information from PRIME

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=65357

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>