Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PRIME time for traffic incident management

09.06.2004


More traffic, more incidents; an urban traffic manager’s nightmare. Yet tried and tested solutions to predict, detect, verify, and respond to such incidents are a dream come true.



The solutions were the result of research undertaken by the IST programme-funded PRIME project. The objective of PRIME, an acronym for Prediction of Congestion and Incidents In Real Time for Intelligent Incident Management and Emergency Traffic Management, was to develop innovative methods to improve the dynamic prediction, detection, verification, and response to incidents. This information could then be transmitted to an Urban Traffic Control (UTC) system, where control room operators processes it and issue a warning to drivers either through in-vehicle systems, Variable Message Signs, or via a public radio broadcast. The UTC system could feed this critical information to Incident Response teams and the appropriate response actions could take place, such as blocking a road and sending emergency vehicles on location.

Fourteen project partners in five countries - Spain, Greece, the UK, Germany and The Netherlands - developed prototype components by communicating and exchanging elements of design and code by e-mail and at project meetings. Eventually it was necessary to pull all of the work together, which was done at a workshop where components from Spain, Greece and the UK were successfully integrated and tested through a common database.


A successful prototype

One such prototype has led to RAID (Remote Automatic Incident Detection), a direct product of the research undertaken by PRIME. The RAID system is being further developed by project partner Siemens Traffic Controls Ltd., the UK market leader in traffic technology and solutions.

PRIME’s coordinator Dr Tom Cherrett from the University of Southampton’s Transportation Research Group explains: "The main advantage of the system is that it uses an existing data source to provide additional information on network conditions to aid the control room operator in coordinating traffic."

RAID allows the control room operator to set and adjust the alarm trigger thresholds for each detector in the network and, because it is a single station algorithm, it does not require the output from adjacent up and down stream detectors before being able to trigger an alarm.

The system produces incident text messages. It then notifies the operator of potential incidents through an interactive map display developed by Siemens Traffic Controls Ltd. This graphical user interface, developed under the PRIME project, has been developed for RAID using the UTC map editor facility. This allows the operator to link RAID to existing maps of the urban area controlled by UTC. RAID incidents appear in the form of flashing detectors on the map.

Tested and adopted in Southampton

Under the PRIME project, RAID was tested on road sections with and without signals in Southampton. The online test took place for 167 consecutive days between 17 May 2001 until 31 October 2001, between 07:00 and 19:00 daily and involved some 74 detectors strategically placed along the A33 Bassett Avenue and A35 Winchester Road. All incidents detected by RAID were recorded by the control room operators in a database. (Incidents were defined as vehicle-on-vehicle impacts, vehicle breakdowns, illegal parking or unloading and emergency works.)

The RAID detection rate of verified incidents on the two roads was 69 per cent and 92 per cent respectively. This means that 22 of the 32 incidents on the A33 Bassett Avenue and 45 of the 49 incidents on the A35 Winchester Road were detected. On A33 there were 100 false alarms, or 55 per cent of the A33 Bassett Avenue RAID detections were not incidents and were caused by abnormally heavy congestion attributed to bad weather, special events and football matches.

These warnings were beneficial to the control room operators as one in every 3.8 of them resulted in either a Variable Message Sign strategy to display electronic messages to drivers on the road such as long delays expected or accident ahead, or alternatively a radio traffic bulletin being issued by the control room operator to the general public.

"Siemens Traffic Controls Ltd. is currently developing RAID further. The system has been adopted by Southampton City Council and testing is ongoing in Essex," says Cherrett.

PRIME elsewhere in Europe

Other project participants have also been acting on the results from PRIME. Based on its findings and on other incident management projects, TNO, the Netherlands Organisation for Applied Scientific Research, is now interested in fully incorporating incident management in dynamic traffic management, and in assessing the effects on traffic safety. PRIME’s incident management experiences and results from PRIME’s estimation of incident probability provided a good starting point.

TNO is also using the PRIME experiences for emergency planning, working with regional authorities and the Dutch National Police Agency. For example it led to TNO’s model weighing the costs and benefits of reduced drive times of the Dutch emergency services on their main road network; a clear illustration of the ways in which incident management can contribute significantly to reducing the costs of incidents and related congestion.

In Greece, PRIME was applied to the Attiki Odos motorway site, allowing a second phase of rigorous testing. The hope is that PRIME’s incident management methods will be incorporated within the motorway incident management structure when it is next updated.

Machine vision opens the road to new applications

Machine vision was another facet of PRIME’s incident management solution. Project partner FORTH worked on further improving the PRIME machine vision system, including the ability to transform 3-dimensional road images to 2-dimensional ones, thus facilitating detection. The system incorporates a 360-degree panoramic camera that reduces the amount of hardware needed on the road. The system was tested with 27 video clips from Southampton and Barcelona. It was finally installed and tested on busy urban roads in the Athens Olympic Ring.

Another Greek partner, KION, has shared some of PRIME’s findings on the machine vision database structure with ATS, a collaborating company in Athens. The two companies worked together to develop methods for opening the incident management machine vision database to new applications through XML and other ways.

ATS will also provide a number of machine vision units for incident management to be installed in time for this summer’s Olympics.

Given such success, others are starting to take note. Interest is being expressed across the Atlantic where Yorgos Stephanedes, the PRIME Technical Manager, has been invited to present the PRIME findings at a US tour, beginning with Purdue University in April 2004.

Contact:
Dr Tom Cherrett
Transportation Research Group
School of Civil Engineering and the Environment
University of Southampton
Highfield
SOUTHAMPTON
SO17 1BJ
United Kingdom
Email: T.J.Cherrett@soton.ac.uk
Source: Based on information from PRIME

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=65357

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

More genes are active in high-performance maize

19.01.2018 | Life Sciences

How plants see light

19.01.2018 | Life Sciences

Artificial agent designs quantum experiments

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>