Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cruise control - even in traffic

19.05.2004


"We can drive from Amsterdam to Rotterdam in the rush hour, and we can do it without touching either the accelerator or the brakes!" says Peter Hendrickx, coordinator of the DenseTraffic project, speaking about the new RoadEye radar sensor the project has developed.



Second-generation adaptive cruise control

The RoadEye radar sensor is a vital component in the new second generation of Adaptive Cruise Control (ACC) systems for vehicles. Unlike the ACC fitted to several upmarket cars today, the coming second generation systems need to be able to handle very low speeds and dense traffic (hence the project name) where vehicles may be typically only 15-16 metres apart.


These 2nd generation ACC systems will be able to stay in control of a vehicle’s engine and brakes at speeds of anything between zero and 250 kilometres per hour, in a straight line and in road bends of much tighter radius than before, and handle the situation of vehicles cutting in front of you. They can even cope with traffic coming completely to a halt and starting off again, a situation typical of today’s congested roads.

Working prototype shown to car makers

What makes these capabilities possible is the RoadEye sensor developed within this IST programme funded project, which finished in December 2003. RoadEye is a new multi-beam radar sensor with a more sophisticated antenna system, a wider angle of view (hence the abilities with road bends), and an IC architecture optimised for low-cost production.

The DenseTraffic project partners have fitted a working RoadEye prototype into a demonstration vehicle to show the system’s capabilities. Hendrickx is justifiably proud of the project results. "So far no other radar sensor has been able to do what RoadEye can do."

An Audi S8 fitted with the unit has been exhibited to most of the major European car-makers, as well as to companies involved in vehicle systems development. While visiting the US, the project partners even fitted a RoadEye unit into a Mercedes S Class vehicle in place of the standard sensor, to show how the ACC system could be improved.

Groeneveld is now actively marketing the RoadEye radar sensor to vehicle manufacturers and systems developers around the world. The company is also researching how to develop a turnkey ACC package capable of meeting the needs of customers that require a complete system.

Contact:
Peter Hendrickx
Groeneveld Groep B.V.
Stephensonweg 12
PO Box 777
4200 AT Gorinchem
The Netherlands
Tel: +31-18-3641400
Fax: +31-18-3626211
Email: phendrickx@groeneveld.nl

Source: Based on information from DenseTraffic

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&ID=65145

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>