Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cruise control - even in traffic

19.05.2004


"We can drive from Amsterdam to Rotterdam in the rush hour, and we can do it without touching either the accelerator or the brakes!" says Peter Hendrickx, coordinator of the DenseTraffic project, speaking about the new RoadEye radar sensor the project has developed.



Second-generation adaptive cruise control

The RoadEye radar sensor is a vital component in the new second generation of Adaptive Cruise Control (ACC) systems for vehicles. Unlike the ACC fitted to several upmarket cars today, the coming second generation systems need to be able to handle very low speeds and dense traffic (hence the project name) where vehicles may be typically only 15-16 metres apart.


These 2nd generation ACC systems will be able to stay in control of a vehicle’s engine and brakes at speeds of anything between zero and 250 kilometres per hour, in a straight line and in road bends of much tighter radius than before, and handle the situation of vehicles cutting in front of you. They can even cope with traffic coming completely to a halt and starting off again, a situation typical of today’s congested roads.

Working prototype shown to car makers

What makes these capabilities possible is the RoadEye sensor developed within this IST programme funded project, which finished in December 2003. RoadEye is a new multi-beam radar sensor with a more sophisticated antenna system, a wider angle of view (hence the abilities with road bends), and an IC architecture optimised for low-cost production.

The DenseTraffic project partners have fitted a working RoadEye prototype into a demonstration vehicle to show the system’s capabilities. Hendrickx is justifiably proud of the project results. "So far no other radar sensor has been able to do what RoadEye can do."

An Audi S8 fitted with the unit has been exhibited to most of the major European car-makers, as well as to companies involved in vehicle systems development. While visiting the US, the project partners even fitted a RoadEye unit into a Mercedes S Class vehicle in place of the standard sensor, to show how the ACC system could be improved.

Groeneveld is now actively marketing the RoadEye radar sensor to vehicle manufacturers and systems developers around the world. The company is also researching how to develop a turnkey ACC package capable of meeting the needs of customers that require a complete system.

Contact:
Peter Hendrickx
Groeneveld Groep B.V.
Stephensonweg 12
PO Box 777
4200 AT Gorinchem
The Netherlands
Tel: +31-18-3641400
Fax: +31-18-3626211
Email: phendrickx@groeneveld.nl

Source: Based on information from DenseTraffic

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&ID=65145

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>