Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Controlling pollution through real time traffic management

19.05.2004


With increased traffic pollution plaguing Europe’s cities, a near real-time vehicle pollution monitoring system that correlates traffic conditions and the resulting levels of pollution has been developed and road-tested and should help to create healthier urban environments.



Maurizio Tomassini, coordinator of the HEAVEN project, describes it as "a system for connecting real-time traffic data to emissions and concentrations due to vehicle pollutants. End products are near-real-time maps showing the distribution of CO, NOx, benzene, particulates and noise pollution. The system has been trialled in six European cities: Berlin, Paris, Rome, Leicester [UK], Rotterdam and Prague."

"There was a definite need for HEAVEN," adds Tomassini. "Each city has its own way of doing things. One department looks after communications, another after traffic management, another environmental matters, and so on. There was no single integrated platform that could integrate and diffuse the information to the city departments together and to citizens. The HEAVEN architecture has been developed according to a general framework, but with the capability of easily incorporating specific solutions and requirements."


In addition to providing near-real time information, databases are being built up for subsequent modelling. One could have a scenario, for example, that took into account traffic flows and weather conditions to know the overall environmental impact. The scenario, via the traffic demand management strategy (TDMS) simulation feature of the Heaven system, can be played through, hour by hour, to see what the net benefits might be. Parameters, such as average traffic speed as a function of the time of day, can be adjusted.

TDMS for real: the examples of Berlin and Leicester

With funding from the IST programme, HEAVEN was used to study TDMS and pollution levels in Berlin’s Beusselstrasse, a street that has a substantial flow of heavy goods vehicles. Two TDMSs were evaluated: one with the imposition of a 30 km/hr speed limit; the other a total lorry ban. The results will have a strong influence on future traffic planning because the study indicated that, in the long term, it may be difficult to comply with future environmental limits, particularly those for NO2 and PM10 (particulate matter).

Subsequent analysis showed that the Beusselstrasse TDMSs was only partially successful. The average speed was reduced to only 38 km/hr (instead of 30), and 50 per cent of goods lorries ignored the ban. Nevertheless, HEAVEN showed that there was a noise reduction of 1-2 dB(A), NO2 was reduced by 10 per cent and particulates by 8 per cent. These results are consistent with those predicted by models developed within HEAVEN.

In Leicester, HEAVEN was used to support local council decisions that span several administrative boundaries. Assessments have been conducted for the Local Transport Plan and the Air Quality Review, and the advantages of several TDMS’ were quantified.

One of the key findings is that it is impractical to consider reducing vehicle speeds in Leicester by 20 per cent because it will cause peak traffic flows to spread out. Another finding is that restrictions on access for heavy goods vehicles and the promotion of park-and-ride schemes will have a positive benefit for noise levels and air quality on account of the significant reduction in traffic flow.

Decision support and legacy systems

"HEAVEN is particularly effective because the construction of traffic flow data comes from the extrapolation of real situations," adds Tomassini. "It’s not a pure assignment model that might be found with conventional planning models." HEAVEN supports the decision-making process by integrating traffic and environment legacy systems, which enables real-time air quality, traffic and information management, and facilitates the assessment of the environmental impact of different TDMSs.

The HEAVEN toolkit includes: a comprehensive decision support framework that enables data to be transferred to other application sites in line with local characteristics and requirements; a reference architecture with open interfaces that facilitates the integration of existing systems and models, and a range of validated applications covering environmental modeling, model integration and operational schemes. There is also a set of validated short- and long-term traffic scenarios to counter the adverse effects of pollution on the environment, and a set of practical case studies on the environmental benefits of implementing traffic measures.

"In Rome, where I work," says Tomassini, "the system is being used as an operational prototype. The city has decided to engineer the system so that it becomes part of the official operational support system."

Contact:
Maurizio Tomassini
Società Trasporti Automobilistici
Via Ostiense 131/L
I-00154 Rome
Italy
Tel: +39-06-57118216
Fax: +39-06-57118547
Email: m.tomassini@sta.roma.it
Source: Based on information from HEAVEN

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&ID=65141

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>