Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia combustion researchers successfully measure particulate emissions on board diesel vehicle

23.03.2004


NRC/CRF laser-based technique for measuring "real world"emissions seen as key to validating federal vehicle compliance procedures


As it coasts down the Altamont Pass near Livermore, Calif., this Volkswagon Jetta’s vehicle and engine speed measurements are time-matched with LII measurements to obtain a synchronized data set correlating real-time particulate emissions.
Credits: Sandia



Using a unique laser-based, soot heating technique, a team led by researchers at Sandia National Laboratories’ Combustion Research Facility (CRF) has demonstrated the ability to measure "real world" particulate emissions from a vehicle under actual driving conditions.

While on-board measurements of gaseous emissions are routine, real-time particulate measurements have been far more elusive, yet are essential for validating federal emissions guidelines for vehicle compliance.


Pete Witze, an engineer in Sandia’s CRF engine combustion department, recently collaborated with Artium Technologies, Chevron Oronite, and the National Research Council (NRC) Canada to demonstrate the feasibility of obtaining on-board measurements of vehicle particulate emissions using laser-induced incandescence (LII) technology. LII is a non-intrusive diagnostic technology that can perform "real-time" measurements of particulate emissions produced by internal combustion engines.

Sandia, Artium Technologies and the NRC have worked together to develop the portable version of LII instrumentation that was successfully applied during this recent trial. Consequently, this new method may alter the way in which the automotive industry effectively gauges particulate emissions.

During the past decade, CRF and NRC researchers honed the LII technique, discovered in the 1970s, with the NRC securing an important temperature-measurement patent that is key to the current measurement capability.

The most notable result during the recent tests, said Witze, was obtained during the coasting descent. "Although the vehicle speed and engine rpm were reasonably steady for the period from 470 to 600 seconds, the particulate emissions suggest that fuel injection cycled on and off intermittently," said Witze (see Figure 2). While the researchers believe the ideal fueling strategy would be to turn off injection for the entire descent, the vehicle is equipped with a catalyst that needs to be kept at its operating temperature.

The average particulate emissions measured by LII during this period were 8.4 ppb, as compared to 10-11 ppb during steady-state idle. This suggests that the engine control module has been programmed to minimize fuel consumption during a descent while maintaining idle-like particulate emission levels and an active catalyst.

The ability to measure on-board particulate tailpipe emissions is of growing environmental interest because of the desire to validate current U.S. Environmental Protection Agency (EPA) vehicle certification procedures. These procedures, which have been the industry standard for more than 30 years, measure emissions using a chassis dynamometer and specify engine speed to be applied during testing. Because such tests do not replicate variables such as grade changes and weather encountered under actual driving conditions, the automotive industry expects dynamometer emissions testing to be supplemented with on-road measurements in the future.

In general, innovative new methods are needed to evaluate the effects of mobile source emissions - both from off- and on-road sources - on air quality, especially as the EPA and state agencies, such as the California Air Resources Board (CARB), update their mobile source emission models.

In conducting the tests, Artium’s commercially available LII instrument and ancillary equipment were placed in the trunk and on one side of the rear seat of a 2002 Volkswagen Jetta with automatic transmission and a turbocharged direct-injection (TDI) diesel engine. An on-board diagnostics (OBD) scan tool interface was used to access the vehicle and engine speeds for recording while the vehicle was driven on a test route in the Bay Area’s Livermore Valley in northern California.

These measurements were then time-matched with the LII measurements to obtain a synchronized data set correlating time-resolved particulate emissions with a variety of vehicle operating conditions that included city driving, freeway driving with entrance-acceleration and hill ascent, and coasting descent on a rural road.

Sandia’s Witze said another unique aspect of the LII measurement technique is that, unlike other systems, it does not require an operator in order to conduct the tests. For this and other reasons, he said engine manufacturers have proven to be "extremely interested" in LII.



Witze will speak on the topic of on-board particulate emissions at the Coordinating Research Council’s (CRC) 14th On-Road Vehicle Emissions Workshop on March 29 in San Diego. More information on that event is available at http://www.crcao.com/

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

More information on Sandia’s particulate matter research and partnerships: Particulate Matter Collaboratory web page at http://www.ca.sandia.gov/pmc/

More information on NRC’s Combustion Research capabilities is available at http://icpet-itpce.nrc-cnrc.gc.ca/research_pt_cr, or contact Debi Zaks (ICPET Media Relations) at (613) 993-3692 or debi.zaks@nrc-cnrc.gc.ca.

Mike Janes | Sandia
Further information:
http://www.sandia.gov/news-center/news-releases/2004/comb-research-auto/particulates.html
http://www.ca.sandia.gov/pmc/

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>