Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia combustion researchers successfully measure particulate emissions on board diesel vehicle

23.03.2004


NRC/CRF laser-based technique for measuring "real world"emissions seen as key to validating federal vehicle compliance procedures


As it coasts down the Altamont Pass near Livermore, Calif., this Volkswagon Jetta’s vehicle and engine speed measurements are time-matched with LII measurements to obtain a synchronized data set correlating real-time particulate emissions.
Credits: Sandia



Using a unique laser-based, soot heating technique, a team led by researchers at Sandia National Laboratories’ Combustion Research Facility (CRF) has demonstrated the ability to measure "real world" particulate emissions from a vehicle under actual driving conditions.

While on-board measurements of gaseous emissions are routine, real-time particulate measurements have been far more elusive, yet are essential for validating federal emissions guidelines for vehicle compliance.


Pete Witze, an engineer in Sandia’s CRF engine combustion department, recently collaborated with Artium Technologies, Chevron Oronite, and the National Research Council (NRC) Canada to demonstrate the feasibility of obtaining on-board measurements of vehicle particulate emissions using laser-induced incandescence (LII) technology. LII is a non-intrusive diagnostic technology that can perform "real-time" measurements of particulate emissions produced by internal combustion engines.

Sandia, Artium Technologies and the NRC have worked together to develop the portable version of LII instrumentation that was successfully applied during this recent trial. Consequently, this new method may alter the way in which the automotive industry effectively gauges particulate emissions.

During the past decade, CRF and NRC researchers honed the LII technique, discovered in the 1970s, with the NRC securing an important temperature-measurement patent that is key to the current measurement capability.

The most notable result during the recent tests, said Witze, was obtained during the coasting descent. "Although the vehicle speed and engine rpm were reasonably steady for the period from 470 to 600 seconds, the particulate emissions suggest that fuel injection cycled on and off intermittently," said Witze (see Figure 2). While the researchers believe the ideal fueling strategy would be to turn off injection for the entire descent, the vehicle is equipped with a catalyst that needs to be kept at its operating temperature.

The average particulate emissions measured by LII during this period were 8.4 ppb, as compared to 10-11 ppb during steady-state idle. This suggests that the engine control module has been programmed to minimize fuel consumption during a descent while maintaining idle-like particulate emission levels and an active catalyst.

The ability to measure on-board particulate tailpipe emissions is of growing environmental interest because of the desire to validate current U.S. Environmental Protection Agency (EPA) vehicle certification procedures. These procedures, which have been the industry standard for more than 30 years, measure emissions using a chassis dynamometer and specify engine speed to be applied during testing. Because such tests do not replicate variables such as grade changes and weather encountered under actual driving conditions, the automotive industry expects dynamometer emissions testing to be supplemented with on-road measurements in the future.

In general, innovative new methods are needed to evaluate the effects of mobile source emissions - both from off- and on-road sources - on air quality, especially as the EPA and state agencies, such as the California Air Resources Board (CARB), update their mobile source emission models.

In conducting the tests, Artium’s commercially available LII instrument and ancillary equipment were placed in the trunk and on one side of the rear seat of a 2002 Volkswagen Jetta with automatic transmission and a turbocharged direct-injection (TDI) diesel engine. An on-board diagnostics (OBD) scan tool interface was used to access the vehicle and engine speeds for recording while the vehicle was driven on a test route in the Bay Area’s Livermore Valley in northern California.

These measurements were then time-matched with the LII measurements to obtain a synchronized data set correlating time-resolved particulate emissions with a variety of vehicle operating conditions that included city driving, freeway driving with entrance-acceleration and hill ascent, and coasting descent on a rural road.

Sandia’s Witze said another unique aspect of the LII measurement technique is that, unlike other systems, it does not require an operator in order to conduct the tests. For this and other reasons, he said engine manufacturers have proven to be "extremely interested" in LII.



Witze will speak on the topic of on-board particulate emissions at the Coordinating Research Council’s (CRC) 14th On-Road Vehicle Emissions Workshop on March 29 in San Diego. More information on that event is available at http://www.crcao.com/

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

More information on Sandia’s particulate matter research and partnerships: Particulate Matter Collaboratory web page at http://www.ca.sandia.gov/pmc/

More information on NRC’s Combustion Research capabilities is available at http://icpet-itpce.nrc-cnrc.gc.ca/research_pt_cr, or contact Debi Zaks (ICPET Media Relations) at (613) 993-3692 or debi.zaks@nrc-cnrc.gc.ca.

Mike Janes | Sandia
Further information:
http://www.sandia.gov/news-center/news-releases/2004/comb-research-auto/particulates.html
http://www.ca.sandia.gov/pmc/

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>