Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New radar system may help airplanes avoid in-flight icing

11.03.2004


The buildup of ice on airplanes in flight is a major winter hazard for small and commuter planes. But scientists at the National Center for Atmospheric Research (NCAR) in Boulder, Colo., are testing a new system this month that may pinpoint water droplets in clouds that cause icing, potentially enabling pilots to avoid dangerous areas.

The system, known as S-Polka, combines two existing radars that use different wavelengths. By studying the differences between the images that are reflected back to each radar, scientists hope to find tiny water droplets that are difficult to distinguish using either radar alone. The project is funded by the National Science Foundation (NSF), which is NCAR’s primary sponsor, and the Federal Aviation Administration (FAA).

"NSF continues to invest in fundamental science while recognizing opportunities for the broader impacts of the research it supports," said Cliff Jacobs, program director in NSF’s division of atmospheric sciences. "This new effort is a clear link between knowledge that benefits society and fundamental studies of our atmosphere."



"This will take out a lot of the guess work," explains Marcia Politovich, director of NCAR’s icing program. "We think it will show exactly where the water is. That information could ultimately turn into an important warning system for pilots."

Scientists and engineers at NCAR are deploying S-Polka through the end of March at NCAR’s Marshall facility southeast of Boulder. The system consists of a powerful polarized radar, known as S-Pol, which operates at a frequency of 3,000 MHz, and a polarized Ka-band radar, which operates at 35,000 MHz. The S-Pol radar produces detailed images of clouds and precipitation, whereas the Ka-band radar can detect weaker clouds that are not precipitating. By comparing the images from each radar, researchers hope to find areas in clouds that harbor water droplets.

Finding cloud water droplets has long posed a scientific challenge. The droplets are 50 microns or less in diameter, just one-tenth the size of raindrops. They may remain in liquid form even when the surrounding air temperature drops below freezing. The droplets are most dangerous at that time because they adhere to aircraft wings and then freeze, reducing the plane’s aerodynamic properties.

Unfortunately, existing radar often cannot detect the droplets if they are surrounded by larger raindrops or snow. Even if small cloud particles are detected, a radar signal cannot indicate whether they are droplets or ice crystals.

"When it comes to cloud particles, we can’t interpret the standard radar echo," explains NCAR’s Jothiram Vivekanandan, the lead scientist on the project. "This research is very challenging."

The two radars have been mounted on a single pedestal at the Marshall facility. They are precisely aligned to look at the same defined area at the same time. Researchers will compare the radar images with data collected from a University of North Dakota Citation research airplane flying in the test area to determine whether the radar system is pinpointing water droplets.

After data are collected this month, the researchers will focus on identifying and measuring droplets within the radar images accurately. If all goes well, the instrument will undergo final tests in a couple of years before being made available to airports.

Notable Icing Crashes:
  • In-flight icing downed the small plane carrying 1950s rock and roll legends Buddy Holly, Ritchie Valens and The Big Bopper (J.P. Richardson). All three musicians and the pilot died when their plane crashed soon after take-off from Mason City, Iowa, on Feb. 3, 1959.

  • An American Eagle ATR-72 went into a high-speed dive and crashed near Roselawn, Ind., on Oct. 31,1994. As the plane circled for a half hour waiting to land in Chicago, ice forming on the wings caused the crew to lose control. None of the 68 people aboard survived.

  • An Embraer 120RT en route from Cincinnati crashed on approach to the Detroit airport on Jan. 9, 1997, killing all 29 people on board. At the time, other aircraft in the area were reporting icing minor to very heavy.

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/home/news.html

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>