Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Navigating the unknown - nautical 3D maps and tourist guides


At sea, when you approach land? Tellmaris’ prototype system provides up-to-date 3D information to orient sailors as and when they dock.

Two years after initial market research and interviews with over 800 pleasure boat users, the IST-funded TellMaris team (consisting of firms and research institutes from Norway, Finland, Germany and Greece) has developed three prototypes for areas of the Baltic Sea in Northern Europe. Sailors and leisure boat tourists were chosen as the test sample for 3D maps since maps are important components of sailing.

Offshore assistance

The TellMarisOnBoard prototype runs on a laptop, and supports sailors and boat tourists with information while travelling at sea. The system provides 3D navigation and vital information about the entrance of harbours, with regular weather forecasts to supplement the spatial information. In addition the system provides searchable tourist information which is kept up-to-date over the Internet.

The user can search for relevant information - harbour facilities, cultural events and hotels - and these features are displayed in the 3D map as symbols or as 3D rendering of the real object, if available in the database. Clicking on the object will provide further information on the facility. Coupled to GPS it gives the sailor a 3D landscape view of the surrounding landscape with 3D buildings, trees, topography, seamarks (buoys and lighthouses). The system is different from other applications for laptops in that the data is not loaded from CD or diskette, but dynamically downloaded using mobile technology, keeping the information constantly up-to-date.

Onshore guidance

While TellMarisOnBoard provides information for tourists at sea, the TellMarGuide prototypes - one running on a Nokia communicator and the other on an HP IPAQ Pocket PC - are land-based. They support navigation around a city with route and location-based services and information on city attractions, restaurants and other tourist highlights.

One of the most innovative elements of the TellMaris project has been to develop a hierarchical data structure that can store both the usual 2D terrain surface, but also tourist information content and a 3D object database that stores features enabling the accurate representation of buildings from multiple viewpoints. Furthermore, the project emphasises dynamic downloading of updated and relevant tourist information from the Internet (market research showed that information used by tourists should be comprehensive, regularly updated and quality approved).

With tourists using a range of technologically diverse mobile devices, TellMaris’ ability to use compact data structures, to store 3D geodata and simple GIS functionality (whilst using minimal storage, memory and CPU resources) will be critical to user-adoption.

User testing

Commenting on the usability tests undertaken as part of the project, Katri Laakso from the Nokia Research Centre said: "Users’ attitudes towards the prototypes were generally positive. 75 per cent said they would like to use this kind of service rather than 2D paper maps and guidebooks. The 3D map itself was found to be a good idea, although many experienced map users thought that an electronic 2D map would be sufficient for them. Most of the users tried to use the 3D model as a navigational tool, and all of them used it to recognise buildings, mostly successfully. Some claimed that non-textured buildings were hard to distinguish. Textured buildings (those with realistic rendering) were considered more easy to recognize."

Apart from matching buildings in the real world to an on-screen representation, the most common navigation strategy for users was to follow the direction arrow in the 3D view coupled with 2D information about target location. The users also had the possibility to choose the 3D viewing height to switch between the pedestrian view at 1.8m and the bird’s-eye-view at 25m. Feedback suggested the bird’s-eye-view was easier for navigational purposes.

The future

The consortium is initially looking to commercialise the technology with partners with whom it can further develop or licence the TellMarisOnBoard technology for 3D sea charts for boat tourists. However application of the technology is potentially much broader. As network speeds increase, enabling us to make use of location based services (especially on land) the consortium is positioning the TellMaris technology as a system with the capability to offer dynamic, up-to-date tourist information at any time, in any place via mobile phone.

The TellMaris team can envisage a future all mobile phone users, not just tourists, can benefit from interactive 3D maps fuelled by TellMaris technology to support location based services.


Jan Rasmus Sulebak
Department of Applied Mathematics
Forskningsveien 1
NO-0314 Oslo
Tel: +47-22-06-74-10
Source: Based on information from TellMaris

Tara Morris | IST Results
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>