Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A “slurp” says more than ten beeps

18.12.2003


Natural warning sounds may be the future in airplanes and perhaps in cars as well. A “slurp” when fuel is low works better than a monotonous beeping sound. In a dissertation at The Royal Institute of Technology (KTH) in Sweden, Pernilla Ulfvengren has studied how warning sounds function, how we associate sounds, and how new sounds can be designed.



In the cockpit of an airplane there are a large number of warning units. If something happens to the plane, some twenty alarms may go off simultaneously, with lights blinking and a number of different beeping sounds signaling at high volume levels. These alarms are necessary, of course, but they can also confuse the pilot when there are too many of them to keep straight and remember what each one means. This problem has been known for some time.

With this in mind, Pernilla Ulfvengren embarked upon her doctoral studies. Designing alarm systems is in the field of cognitive engineering, technological research adapted to how the brain apprehends different types of information. The design of computer interfaces is another area in which cognitive engineering plays a major role.


Pernilla Ulfvengren soon found that warning sounds were a largely undeveloped field of research compared with visual signals, for instance. Alarm sounds have remained largely the same for many years. They involve tone generators that create simple sound pulses of different frequency. High volume and high frequency have been the standard model. This works fine when there are one or two possible alarms, but problems arise when there is an incoherent cacophony of different beeps.

The researcher started to study how we associate certain sounds that are more natural, in the sense that we have encountered them before, and if it is easier to remember them when they are given certain meanings. She found that it is easier to remember what an alarms sound means if we can associate it with something we recognize, and that it was also much easier for people to distinguish between several types of sounds. Roughly in the same way that it’s easier to distinguish between many different faces than between many pictures of nondescript patterns.

The aim of the dissertation is quite simply to describe a method for industry to go about designing sounds to describe different functions.

Jacob Seth-Fransson | alfa
Further information:
http://www.kth.se/eng

More articles from Transportation and Logistics:

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Efficient and intelligent: Drones get to grips with planning the delivery of goods
12.07.2017 | Alpen-Adria-Universität Klagenfurt

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>