Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New catalyst could help

04.12.2003


A new catalyst could help auto makers meet the U.S. Environmental Protection Agency’s deadline to eliminate 95 percent of nitrogen-oxide from diesel engine exhausts by 2007, while saving energy.



Developed by the U.S. Department of Energy’s Argonne National Laboratory, the new catalyst is one of a family of related catalysts that also shows promise for reducing NOx emissions from industrial sources, such as coal-fired power plants and furnaces at chemical plants and refineries.

Nitrogen oxides — collectively called "NOx" — contribute to smog, acid rain and global climate change.


"For diesel engines, we envision manufacturers placing ceramic catalytic reactors in the exhaust pipes, where they will convert NOx emissions into nitrogen," said inventor Chris Marshall of Argonne’s Chemical Engineering Division. Nitrogen is a harmless gas that makes up more than 80 percent of the Earth’s atmosphere.

"Our most promising catalyst for diesel engines," Marshall said, "is Cu-ZSM-5 with an external coating of cerium oxide." Cu-ZSM-5 is a zeolite doped with copper; zeolites are common catalysts used in petroleum refining.

Those working previously with Cu-ZSM-5 and similar catalysts, he said, found that they performed poorly at removing NOx from diesel exhaust. They require temperatures higher than normal exhaust temperatures and don’t work well in the presence of water vapor, which is almost always found in engine exhausts.

"Our new cerium oxide additive," he said, "is the breakthrough that makes it work. When it’s combined with Cu-ZSM-5, the resulting catalyst works at normal exhaust temperatures and is actually more effective with water vapor than without it. With a lean fuel-air mixture, it removes as much as 95 to 100 percent of NOx emissions."

Argonne’s new catalysts also avoid the problems associated with ammonia, which competing catalysts generate.

"The current standard is ammonia-selective catalytic reduction, using urea as the source," Marshall said, "but ammonia is toxic, and unless all of it is converted during the process, whatever remains is released to the atmosphere. While some European diesel manufacturers are taking the urea approach, U.S. diesel manufacturers are looking for alternatives." Since a system using the new catalyst would not require an on-board urea storage tank, the new catalyst is considered safer and more energy-efficient.

"We’re also looking at other elements that may work better than cerium under certain engine conditions," he said. "Zirconia shows good promise."

Initial research on the cerium-oxide catalyst was funded by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The catalyst was developed for chemical plant emissions under a joint research agreement with BP. Research plans call for expanded work aimed at both diesel and natural gas engines and coal-fired power plants.

A patent application has been filed on the new catalyst and it is expected to be available for licensing.

The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is operated by the University of Chicago for the U.S. Department of Energy’s Office of Science.

For more information, please contact Catherine Foster (630/252-5580 or media@anl.gov) at Argonne.

Catherine Foster | DOE/Argonne National Laboratory
Further information:
http://www.anl.gov/OPA/news03/news031128.htm

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>