Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New catalyst could help

04.12.2003


A new catalyst could help auto makers meet the U.S. Environmental Protection Agency’s deadline to eliminate 95 percent of nitrogen-oxide from diesel engine exhausts by 2007, while saving energy.



Developed by the U.S. Department of Energy’s Argonne National Laboratory, the new catalyst is one of a family of related catalysts that also shows promise for reducing NOx emissions from industrial sources, such as coal-fired power plants and furnaces at chemical plants and refineries.

Nitrogen oxides — collectively called "NOx" — contribute to smog, acid rain and global climate change.


"For diesel engines, we envision manufacturers placing ceramic catalytic reactors in the exhaust pipes, where they will convert NOx emissions into nitrogen," said inventor Chris Marshall of Argonne’s Chemical Engineering Division. Nitrogen is a harmless gas that makes up more than 80 percent of the Earth’s atmosphere.

"Our most promising catalyst for diesel engines," Marshall said, "is Cu-ZSM-5 with an external coating of cerium oxide." Cu-ZSM-5 is a zeolite doped with copper; zeolites are common catalysts used in petroleum refining.

Those working previously with Cu-ZSM-5 and similar catalysts, he said, found that they performed poorly at removing NOx from diesel exhaust. They require temperatures higher than normal exhaust temperatures and don’t work well in the presence of water vapor, which is almost always found in engine exhausts.

"Our new cerium oxide additive," he said, "is the breakthrough that makes it work. When it’s combined with Cu-ZSM-5, the resulting catalyst works at normal exhaust temperatures and is actually more effective with water vapor than without it. With a lean fuel-air mixture, it removes as much as 95 to 100 percent of NOx emissions."

Argonne’s new catalysts also avoid the problems associated with ammonia, which competing catalysts generate.

"The current standard is ammonia-selective catalytic reduction, using urea as the source," Marshall said, "but ammonia is toxic, and unless all of it is converted during the process, whatever remains is released to the atmosphere. While some European diesel manufacturers are taking the urea approach, U.S. diesel manufacturers are looking for alternatives." Since a system using the new catalyst would not require an on-board urea storage tank, the new catalyst is considered safer and more energy-efficient.

"We’re also looking at other elements that may work better than cerium under certain engine conditions," he said. "Zirconia shows good promise."

Initial research on the cerium-oxide catalyst was funded by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The catalyst was developed for chemical plant emissions under a joint research agreement with BP. Research plans call for expanded work aimed at both diesel and natural gas engines and coal-fired power plants.

A patent application has been filed on the new catalyst and it is expected to be available for licensing.

The nation’s first national laboratory, Argonne National Laboratory conducts basic and applied scientific research across a wide spectrum of disciplines, ranging from high-energy physics to climatology and biotechnology. Since 1990, Argonne has worked with more than 600 companies and numerous federal agencies and other organizations to help advance America’s scientific leadership and prepare the nation for the future. Argonne is operated by the University of Chicago for the U.S. Department of Energy’s Office of Science.

For more information, please contact Catherine Foster (630/252-5580 or media@anl.gov) at Argonne.

Catherine Foster | DOE/Argonne National Laboratory
Further information:
http://www.anl.gov/OPA/news03/news031128.htm

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>