Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Height sensitive: Rear crash protection devices for heavy trucks

17.11.2003


Penn State simulation testing suggests that barriers, called underride guards, placed on the rear end of heavy trucks to prevent cars from sliding underneath and being crushed in rear-end collisions may be less effective if placed lower or higher than 16 inches (400 mm) from the ground.

The National Highway Transportation Safety Administration regulations set a maximum ground clearance of 22 inches (560 mm) and no minimum for underride guards on new trucks.

The Penn State simulation study also showed that underride guards that include diagonal struts increase impact resistance. When the struts are used, vehicle penetration under the truck was fairly small in the simulations.



Dr. Moustafa El-Gindy, director of the Vehicle Simulation Research Center at Penn State’s Pennsylvania Transportation Institute, led the study. He says, "On average, 500 passenger vehicle occupants are killed and over 18,000 are injured each year in rear impact crashes with trucks."

El-Gindy presented the Penn State team’s results today (Nov. 17) at the ASME International Mechanical Engineering Congress and R & D Expo in Washington, D. C. Co-authors of the paper are Dr. Ali O. Atahan, assistant professor of civil engineering, Mustafa Kemal University in Turkey, and Abhishek S. Joshi, a master’s degree student in Penn State’s Department of Industrial and Manufacturing Engineering. The paper is "A Rear-End Protection Device for Heavy Vehicles. "

In the studies, the Penn State researchers used a commercially available computer simulation program, called LS-DYNA, to model different underride guard designs and a Geo Metro computer model from the National Crash Analysis Center as a representative of small passenger vehicles.

Sixteen simulations were carried out. In half, the underride guard had diagonal struts and the other half did not. Each underride guard was tested at four different heights from the ground, i.e. 12 inches (300mm), 16 inches (400 mm), 20 inches (500 mm) and 24 inches (600 mm). For each height, simulations were performed at 30 miles per hour (48 kph) and 40 miles per hour (64 kph). The Geo Metro impacted the underride guard head on.

The simulations, which were validated when compared to actual crash test results, suggest that the optimum height for the underride guard is 16 inches (400 mm) when the impacting vehicle is traveling at 40 miles per hour. When the height is higher or lower, risk for vehicle damage and injury to its occupants increase.

He notes "The impact behavior of the optimum underride guard should be further evaluated using different types of vehicles with varying bumper heights to gain broader acceptability."

Barbara Hale | Penn State
Further information:
http://www.psu.edu/ur/2003/crashpreventor.html

More articles from Transportation and Logistics:

nachricht Variable speed limits could reduce crashes, ease congestion in highway work zones
07.06.2017 | University of Missouri-Columbia

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>