Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Height sensitive: Rear crash protection devices for heavy trucks

17.11.2003


Penn State simulation testing suggests that barriers, called underride guards, placed on the rear end of heavy trucks to prevent cars from sliding underneath and being crushed in rear-end collisions may be less effective if placed lower or higher than 16 inches (400 mm) from the ground.

The National Highway Transportation Safety Administration regulations set a maximum ground clearance of 22 inches (560 mm) and no minimum for underride guards on new trucks.

The Penn State simulation study also showed that underride guards that include diagonal struts increase impact resistance. When the struts are used, vehicle penetration under the truck was fairly small in the simulations.



Dr. Moustafa El-Gindy, director of the Vehicle Simulation Research Center at Penn State’s Pennsylvania Transportation Institute, led the study. He says, "On average, 500 passenger vehicle occupants are killed and over 18,000 are injured each year in rear impact crashes with trucks."

El-Gindy presented the Penn State team’s results today (Nov. 17) at the ASME International Mechanical Engineering Congress and R & D Expo in Washington, D. C. Co-authors of the paper are Dr. Ali O. Atahan, assistant professor of civil engineering, Mustafa Kemal University in Turkey, and Abhishek S. Joshi, a master’s degree student in Penn State’s Department of Industrial and Manufacturing Engineering. The paper is "A Rear-End Protection Device for Heavy Vehicles. "

In the studies, the Penn State researchers used a commercially available computer simulation program, called LS-DYNA, to model different underride guard designs and a Geo Metro computer model from the National Crash Analysis Center as a representative of small passenger vehicles.

Sixteen simulations were carried out. In half, the underride guard had diagonal struts and the other half did not. Each underride guard was tested at four different heights from the ground, i.e. 12 inches (300mm), 16 inches (400 mm), 20 inches (500 mm) and 24 inches (600 mm). For each height, simulations were performed at 30 miles per hour (48 kph) and 40 miles per hour (64 kph). The Geo Metro impacted the underride guard head on.

The simulations, which were validated when compared to actual crash test results, suggest that the optimum height for the underride guard is 16 inches (400 mm) when the impacting vehicle is traveling at 40 miles per hour. When the height is higher or lower, risk for vehicle damage and injury to its occupants increase.

He notes "The impact behavior of the optimum underride guard should be further evaluated using different types of vehicles with varying bumper heights to gain broader acceptability."

Barbara Hale | Penn State
Further information:
http://www.psu.edu/ur/2003/crashpreventor.html

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>