Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Active Control System Could Halt Squealing Brakes in Cars, Trucks and Buses

18.06.2003


Squealing brakes cost auto manufacturers several hundred million dollars a year in warranty repairs and are among consumers’ top 20 vehicle complaints – even in luxury cars. Now, acoustics researchers at the Georgia Institute of Technology have developed a solution that could stop the problem of noisy brakes once and for all.


Professor Ken Cunefare (foreground) displays an actuator that would be part of an active control system to stop brake squeal in vehicles. Graduate Research Assistant Jeff Badertscher poses with brake dynamometer used to test the system.
Georgia Tech Photo: Gary Meek


Close-up of actuator that would be part of an active control system to stop brake squeal in vehicles. It includes a piezoceramic stack that generates a dithering frequency to control the squeal.
Georgia Tech Photo: Gary Meek



In disc brakes, squeal can occur when the brake pads contact the rotor while the vehicle is moving at low speeds, setting up a vibration that manifests itself as an annoying high-pitched squeal. The noise doesn’t affect brake operation, but the problem – which occurs in cars, trucks and buses – leads to needless replacement of brake pads and the addition of shims, damping materials and other parts designed to stop the noise.

“A squealing brake still works, and from an engineering perspective, there is no safety problem when the brakes are squealing,” said Kenneth Cunefare, an acoustics researcher in Georgia Tech’s School of Mechanical Engineering. “But it’s a perceived problem with the quality of the vehicle. If you’ve bought a new luxury car, you don’t want the brakes to squeal. So manufacturers must spend money on warranty repairs that shouldn’t be necessary.”


Automotive engineers have learned many tricks for designing quiet braking systems, but despite their best efforts, squeal still appears unpredictably. Designers have proposed feedback control systems that would detect the noise and then generate out-of-phase vibrations to counter the specific frequency of the squeal. Because of the complexity and cost, such systems haven’t been implemented.

By contrast, the Georgia Tech system would use a simple piezoceramic actuator mounted inside the brake piston to apply bursts of a “dithering” frequency to the backing plate of the inside brake pad, suppressing the vibrations that cause squeal. This active control would work despite temperature and humidity changes – and normal brake system wear – all of which can change the squeal frequency.

The system would be connected to vehicle brake light switches, turned on whenever the brakes were applied.

“Compared to feedback control, our dither system would be much simpler,” Cunefare said. “It would be an open loop control system in which we won’t need to detect the presence of squeal. All we would need to know is that the brakes have been applied.”

Without the need for detectors or logic systems to determine the proper control frequency, the Georgia Tech system could be much simpler, with fewer components. The piezoceramic stacks that Cunefare is now testing cost $130 each today, but he estimates high-volume production should reduce that to around $30 each – and perhaps even to a few dollars each. A single frequency generator and power electronics system could serve a vehicle’s entire braking system, though an actuator would be required for each brake piston.

In extensive laboratory testing using a dynamometer and acoustic measuring equipment, the system has been able to control brake squeal under a variety of different conditions. Next, Cunefare and his collaborators would like to field-test the system under real vehicle operating conditions.

“In terms of understanding the design constraints, we are pretty far along with this,” he said. “We know the temperature changes we’ll have to survive, and we know the forces that we’ll have to generate.”

Long-term reliability of the system and its potential effects on braking efficiency are among the critical long-term questions that must be answered by field testing. The brake system would still stop the vehicle if the squeal control system malfunctioned because the actuator would be located inside the piston. So far, Cunefare’s testing shows minimal – or no – impact on brake performance.

“This is fundamentally a fail-safe technology,” he added. “If an actuator were to break, there would still be another load path to allow the piston to operate the brakes.”

While the system would probably be installed first on high-end automobiles, it could potentially be retrofitted to existing vehicles. “Our goal is to have a drop-in module that slips directly into the brake piston and connects to the vehicle wiring harness,” Cunefare said.

The same principle could also be applied to drum brakes, which are used in heavier vehicles such as trucks and buses, and on the rear wheels of many automobiles.

The piezoceramic stacks consist of several layers of piezoelectric materials that stretch or contract when electrical current passes through them. Such devices are already used in vehicles, reliably powering fuel injection systems. However, when used to control brake squeal, the actuators would add to demands on vehicle electrical systems.

The actuators would operate at frequencies of about 20 kilohertz (kHz), well above where brake squeal occurs – and above the range of human hearing. The system, Cunefare said, would not be affected by anti-lock braking systems (ABS) now used on many vehicles.

The research has been supported by the National Science Foundation, using dynamometers and other equipment provided by automotive manufacturers and suppliers, including the Ford Motor Company and General Motors. The results of the research were presented in late April at the Acoustical Society of America meeting and have been the subject of papers in several professional journals, including the Journal of Sound and Vibration. In May, a paper (2003-01-1617) was presented to the 2003 SAE NVH Conference in Traverse City, MI.

John Toon | Georgia Institute of Technology
Further information:
http://gtresearchnews.gatech.edu/newsrelease/brakesqueal.htm

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>