Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Active Control System Could Halt Squealing Brakes in Cars, Trucks and Buses

18.06.2003


Squealing brakes cost auto manufacturers several hundred million dollars a year in warranty repairs and are among consumers’ top 20 vehicle complaints – even in luxury cars. Now, acoustics researchers at the Georgia Institute of Technology have developed a solution that could stop the problem of noisy brakes once and for all.


Professor Ken Cunefare (foreground) displays an actuator that would be part of an active control system to stop brake squeal in vehicles. Graduate Research Assistant Jeff Badertscher poses with brake dynamometer used to test the system.
Georgia Tech Photo: Gary Meek


Close-up of actuator that would be part of an active control system to stop brake squeal in vehicles. It includes a piezoceramic stack that generates a dithering frequency to control the squeal.
Georgia Tech Photo: Gary Meek



In disc brakes, squeal can occur when the brake pads contact the rotor while the vehicle is moving at low speeds, setting up a vibration that manifests itself as an annoying high-pitched squeal. The noise doesn’t affect brake operation, but the problem – which occurs in cars, trucks and buses – leads to needless replacement of brake pads and the addition of shims, damping materials and other parts designed to stop the noise.

“A squealing brake still works, and from an engineering perspective, there is no safety problem when the brakes are squealing,” said Kenneth Cunefare, an acoustics researcher in Georgia Tech’s School of Mechanical Engineering. “But it’s a perceived problem with the quality of the vehicle. If you’ve bought a new luxury car, you don’t want the brakes to squeal. So manufacturers must spend money on warranty repairs that shouldn’t be necessary.”


Automotive engineers have learned many tricks for designing quiet braking systems, but despite their best efforts, squeal still appears unpredictably. Designers have proposed feedback control systems that would detect the noise and then generate out-of-phase vibrations to counter the specific frequency of the squeal. Because of the complexity and cost, such systems haven’t been implemented.

By contrast, the Georgia Tech system would use a simple piezoceramic actuator mounted inside the brake piston to apply bursts of a “dithering” frequency to the backing plate of the inside brake pad, suppressing the vibrations that cause squeal. This active control would work despite temperature and humidity changes – and normal brake system wear – all of which can change the squeal frequency.

The system would be connected to vehicle brake light switches, turned on whenever the brakes were applied.

“Compared to feedback control, our dither system would be much simpler,” Cunefare said. “It would be an open loop control system in which we won’t need to detect the presence of squeal. All we would need to know is that the brakes have been applied.”

Without the need for detectors or logic systems to determine the proper control frequency, the Georgia Tech system could be much simpler, with fewer components. The piezoceramic stacks that Cunefare is now testing cost $130 each today, but he estimates high-volume production should reduce that to around $30 each – and perhaps even to a few dollars each. A single frequency generator and power electronics system could serve a vehicle’s entire braking system, though an actuator would be required for each brake piston.

In extensive laboratory testing using a dynamometer and acoustic measuring equipment, the system has been able to control brake squeal under a variety of different conditions. Next, Cunefare and his collaborators would like to field-test the system under real vehicle operating conditions.

“In terms of understanding the design constraints, we are pretty far along with this,” he said. “We know the temperature changes we’ll have to survive, and we know the forces that we’ll have to generate.”

Long-term reliability of the system and its potential effects on braking efficiency are among the critical long-term questions that must be answered by field testing. The brake system would still stop the vehicle if the squeal control system malfunctioned because the actuator would be located inside the piston. So far, Cunefare’s testing shows minimal – or no – impact on brake performance.

“This is fundamentally a fail-safe technology,” he added. “If an actuator were to break, there would still be another load path to allow the piston to operate the brakes.”

While the system would probably be installed first on high-end automobiles, it could potentially be retrofitted to existing vehicles. “Our goal is to have a drop-in module that slips directly into the brake piston and connects to the vehicle wiring harness,” Cunefare said.

The same principle could also be applied to drum brakes, which are used in heavier vehicles such as trucks and buses, and on the rear wheels of many automobiles.

The piezoceramic stacks consist of several layers of piezoelectric materials that stretch or contract when electrical current passes through them. Such devices are already used in vehicles, reliably powering fuel injection systems. However, when used to control brake squeal, the actuators would add to demands on vehicle electrical systems.

The actuators would operate at frequencies of about 20 kilohertz (kHz), well above where brake squeal occurs – and above the range of human hearing. The system, Cunefare said, would not be affected by anti-lock braking systems (ABS) now used on many vehicles.

The research has been supported by the National Science Foundation, using dynamometers and other equipment provided by automotive manufacturers and suppliers, including the Ford Motor Company and General Motors. The results of the research were presented in late April at the Acoustical Society of America meeting and have been the subject of papers in several professional journals, including the Journal of Sound and Vibration. In May, a paper (2003-01-1617) was presented to the 2003 SAE NVH Conference in Traverse City, MI.

John Toon | Georgia Institute of Technology
Further information:
http://gtresearchnews.gatech.edu/newsrelease/brakesqueal.htm

More articles from Transportation and Logistics:

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>