Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Active Control System Could Halt Squealing Brakes in Cars, Trucks and Buses

18.06.2003


Squealing brakes cost auto manufacturers several hundred million dollars a year in warranty repairs and are among consumers’ top 20 vehicle complaints – even in luxury cars. Now, acoustics researchers at the Georgia Institute of Technology have developed a solution that could stop the problem of noisy brakes once and for all.


Professor Ken Cunefare (foreground) displays an actuator that would be part of an active control system to stop brake squeal in vehicles. Graduate Research Assistant Jeff Badertscher poses with brake dynamometer used to test the system.
Georgia Tech Photo: Gary Meek


Close-up of actuator that would be part of an active control system to stop brake squeal in vehicles. It includes a piezoceramic stack that generates a dithering frequency to control the squeal.
Georgia Tech Photo: Gary Meek



In disc brakes, squeal can occur when the brake pads contact the rotor while the vehicle is moving at low speeds, setting up a vibration that manifests itself as an annoying high-pitched squeal. The noise doesn’t affect brake operation, but the problem – which occurs in cars, trucks and buses – leads to needless replacement of brake pads and the addition of shims, damping materials and other parts designed to stop the noise.

“A squealing brake still works, and from an engineering perspective, there is no safety problem when the brakes are squealing,” said Kenneth Cunefare, an acoustics researcher in Georgia Tech’s School of Mechanical Engineering. “But it’s a perceived problem with the quality of the vehicle. If you’ve bought a new luxury car, you don’t want the brakes to squeal. So manufacturers must spend money on warranty repairs that shouldn’t be necessary.”


Automotive engineers have learned many tricks for designing quiet braking systems, but despite their best efforts, squeal still appears unpredictably. Designers have proposed feedback control systems that would detect the noise and then generate out-of-phase vibrations to counter the specific frequency of the squeal. Because of the complexity and cost, such systems haven’t been implemented.

By contrast, the Georgia Tech system would use a simple piezoceramic actuator mounted inside the brake piston to apply bursts of a “dithering” frequency to the backing plate of the inside brake pad, suppressing the vibrations that cause squeal. This active control would work despite temperature and humidity changes – and normal brake system wear – all of which can change the squeal frequency.

The system would be connected to vehicle brake light switches, turned on whenever the brakes were applied.

“Compared to feedback control, our dither system would be much simpler,” Cunefare said. “It would be an open loop control system in which we won’t need to detect the presence of squeal. All we would need to know is that the brakes have been applied.”

Without the need for detectors or logic systems to determine the proper control frequency, the Georgia Tech system could be much simpler, with fewer components. The piezoceramic stacks that Cunefare is now testing cost $130 each today, but he estimates high-volume production should reduce that to around $30 each – and perhaps even to a few dollars each. A single frequency generator and power electronics system could serve a vehicle’s entire braking system, though an actuator would be required for each brake piston.

In extensive laboratory testing using a dynamometer and acoustic measuring equipment, the system has been able to control brake squeal under a variety of different conditions. Next, Cunefare and his collaborators would like to field-test the system under real vehicle operating conditions.

“In terms of understanding the design constraints, we are pretty far along with this,” he said. “We know the temperature changes we’ll have to survive, and we know the forces that we’ll have to generate.”

Long-term reliability of the system and its potential effects on braking efficiency are among the critical long-term questions that must be answered by field testing. The brake system would still stop the vehicle if the squeal control system malfunctioned because the actuator would be located inside the piston. So far, Cunefare’s testing shows minimal – or no – impact on brake performance.

“This is fundamentally a fail-safe technology,” he added. “If an actuator were to break, there would still be another load path to allow the piston to operate the brakes.”

While the system would probably be installed first on high-end automobiles, it could potentially be retrofitted to existing vehicles. “Our goal is to have a drop-in module that slips directly into the brake piston and connects to the vehicle wiring harness,” Cunefare said.

The same principle could also be applied to drum brakes, which are used in heavier vehicles such as trucks and buses, and on the rear wheels of many automobiles.

The piezoceramic stacks consist of several layers of piezoelectric materials that stretch or contract when electrical current passes through them. Such devices are already used in vehicles, reliably powering fuel injection systems. However, when used to control brake squeal, the actuators would add to demands on vehicle electrical systems.

The actuators would operate at frequencies of about 20 kilohertz (kHz), well above where brake squeal occurs – and above the range of human hearing. The system, Cunefare said, would not be affected by anti-lock braking systems (ABS) now used on many vehicles.

The research has been supported by the National Science Foundation, using dynamometers and other equipment provided by automotive manufacturers and suppliers, including the Ford Motor Company and General Motors. The results of the research were presented in late April at the Acoustical Society of America meeting and have been the subject of papers in several professional journals, including the Journal of Sound and Vibration. In May, a paper (2003-01-1617) was presented to the 2003 SAE NVH Conference in Traverse City, MI.

John Toon | Georgia Institute of Technology
Further information:
http://gtresearchnews.gatech.edu/newsrelease/brakesqueal.htm

More articles from Transportation and Logistics:

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>