Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Green’ fuels of the future to be developed

04.06.2003


Car owners of the future could one day swap petrol for environmentally-friendly alternatives, thanks to a multi-million pound research project involving academics at The University of Nottingham.



Researchers from the University’s School of Chemistry and School of Mechanical, Materials, Manufacturing Engineering and Management are developing new materials for hydrogen storage and for use in fuel cells that can use hydrogen as a clean alternative to oil and natural gas.

If new materials can be developed cars powered by hydrogen, which emit only water rather than polluting gases, could be a reality.


The two Nottingham teams form part of a £3.2 million UK Sustainable Hydrogen Energy Consortium (UKSHEC), which also involves partners from other universities and industry.

It is funded by the Engineering and Physical Sciences Research Council (EPSRC) under its SUPERGEN initiative, launched in September 2001, which is investing £25 million over five years in sustainable power generation.

The initiative was introduced in recognition of the need for the UK to meet its targets for sustainable energy generation and controls - the UK is obligated to produce at least 10 per cent of its electricity from renewable sources by 2010 and is also placing strict controls on the emission of carbon dioxide (CO2), which is implicated in global climate change.

Hydrogen has significant advantages over current hydrocarbon fuels as it’’s clean and green (it burns to give water), it is abundant and it has a very high energy content by mass compared to petrol, diesel or natural gas.

Hydrogen, however, as a light gas has a very low volumetric density compared to petrol or diesel, which poses significant problems. Therefore it would need to be stored at extremely high pressures or extremely low temperatures (-253°C) to occupy the same volume as a tank of petrol, for example.

The Nottingham teams - which involve Professor Martin Schröder, Dr Duncan Gregory, Dr Robert Mokaya, Dr Neil Champnes and Dr Peter Hubberstey from Chemistry and Dr Gavin Walker and Dr David Grant in Mechanical, Materials, Manufacturing Engineering and Management -will develop and monitor a range of new materials and systems for the storage of hydrogen.

A major technological challenge, particularly for portable applications such as rechargeable batteries and automotive power, is to develop solid materials that can store hydrogen and release it only when needed, therefore occupying much lower volumes and providing fuel under working conditions.

The multidisciplinary nature of this research is reflected in the fact that the EPSRC is managing the SUPERGEN initiative working together with the Biotechnology and Biological Sciences Research Council (BBSRC), the Economic and Social Research Council) and the Natural Environment Research Council (NERC).

Lyn Heath-Harvey | alfa
Further information:
http://www.nottingham.ac.uk/public-affairs/index.html

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>