Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Green’ fuels of the future to be developed

04.06.2003


Car owners of the future could one day swap petrol for environmentally-friendly alternatives, thanks to a multi-million pound research project involving academics at The University of Nottingham.



Researchers from the University’s School of Chemistry and School of Mechanical, Materials, Manufacturing Engineering and Management are developing new materials for hydrogen storage and for use in fuel cells that can use hydrogen as a clean alternative to oil and natural gas.

If new materials can be developed cars powered by hydrogen, which emit only water rather than polluting gases, could be a reality.


The two Nottingham teams form part of a £3.2 million UK Sustainable Hydrogen Energy Consortium (UKSHEC), which also involves partners from other universities and industry.

It is funded by the Engineering and Physical Sciences Research Council (EPSRC) under its SUPERGEN initiative, launched in September 2001, which is investing £25 million over five years in sustainable power generation.

The initiative was introduced in recognition of the need for the UK to meet its targets for sustainable energy generation and controls - the UK is obligated to produce at least 10 per cent of its electricity from renewable sources by 2010 and is also placing strict controls on the emission of carbon dioxide (CO2), which is implicated in global climate change.

Hydrogen has significant advantages over current hydrocarbon fuels as it’’s clean and green (it burns to give water), it is abundant and it has a very high energy content by mass compared to petrol, diesel or natural gas.

Hydrogen, however, as a light gas has a very low volumetric density compared to petrol or diesel, which poses significant problems. Therefore it would need to be stored at extremely high pressures or extremely low temperatures (-253°C) to occupy the same volume as a tank of petrol, for example.

The Nottingham teams - which involve Professor Martin Schröder, Dr Duncan Gregory, Dr Robert Mokaya, Dr Neil Champnes and Dr Peter Hubberstey from Chemistry and Dr Gavin Walker and Dr David Grant in Mechanical, Materials, Manufacturing Engineering and Management -will develop and monitor a range of new materials and systems for the storage of hydrogen.

A major technological challenge, particularly for portable applications such as rechargeable batteries and automotive power, is to develop solid materials that can store hydrogen and release it only when needed, therefore occupying much lower volumes and providing fuel under working conditions.

The multidisciplinary nature of this research is reflected in the fact that the EPSRC is managing the SUPERGEN initiative working together with the Biotechnology and Biological Sciences Research Council (BBSRC), the Economic and Social Research Council) and the Natural Environment Research Council (NERC).

Lyn Heath-Harvey | alfa
Further information:
http://www.nottingham.ac.uk/public-affairs/index.html

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>