Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student-invented device eases installation of child car safety seats

19.05.2003


Low-tech ‘Main Squeeze’ compresses for snug fit inside vehicle


By turning a simple crank, a parent car uses the Main Squeeze device to ensure that a child safety seat is installed tightly against a car’s permanent seat for maximum protection.
Photo by Will Kirk



Three Johns Hopkins University undergraduates have invented a low-tech tool that makes it much easier to properly install child safety seats in automobiles, ensuring a snug fit and maximum protection for the child.

The device, dubbed "Main Squeeze," is intended to simplify the difficult task of compressing a child safety seat against a car’s permanent seat during installation. Incorrectly installed, a loose car seat can shift during an accident and leave an infant or toddler exposed to unnecessary risk of injury.


The tool was designed and assembled over the past school year by three mechanical engineering majors enrolled in the Whiting School of Engineering’s Senior Design Course. First, the tool is attached to a car’s seat belts or to part of the permanent car seat. Then the user simply turns a crank that slowly applies up to 200 pounds of compression to the base of the child seat. Main Squeeze holds the child seat in this snug position, leaving the installer free to fasten it tightly into place with the car’s seat belts or built-in LATCH (Lower Anchors and Tethers for Children) system. When this installation is completed, the Main Squeeze tool is easily removed

The student inventors -- David Apple, 21, of Herzlyia Pituach, Israel; Eric Park, 22, of Great Neck, N.Y.; and Jennifer Parker, 22, of Newburyport, Mass. -- were assigned last fall to create a device that would make it easier to install child safety seats in vehicles. The project was sponsored by the Center for Injury Research and Policy at the Johns Hopkins Bloomberg School of Public Health.

"Researchers have determined that too many of these seats are installed improperly, exposing children to a greater risk of injury," said Michael Ho, a staff member at the center who monitored the project. "We asked the students to come up with a solution."

In their research, the students, all seniors, learned that snug installation of a child seat is so difficult that many parents seek help from specially trained police officers, firefighters and public safety aides. Snug installation is achieved if less than 1 inch of movement occurs on each side of the safety seat when it is severely shaken laterally by an average size adult male. When installation assistance is not available, parents are left on their own to fit the child seat securely.

"The problem is, to compress the child seat into the car you have to climb inside and apply pressure with your knees," Apple said. "That’s not always easy to do."

Added Park: "A parent or grandparent who is too tall or doesn’t weigh enough or has back problems may not be able to get a snug fit. Our goal was to come up with a lightweight, portable, relatively inexpensive tool to provide the compression that’s needed."

The students’ design is decidedly "low-tech," involving no motorized parts or electricity.

"We used a large steel acme screw, an aluminum crossbar and a padded wooden block mounted on a ball-joint," Parker said. "You put the block into the base of the child seat, attach the crossbar to the car’s seat belts or to the bottom of the permanent seat, and then simply turn the screw with a crank."

The screw applies the necessary force to get a tight seal and holds the child seat in place until it can be fastened into the car via the car’s seat belts or built-in LATCH system (required on all car models introduced after Sept. 2002). The student inventors created an assortment of attachments so that Main Squeeze can be used on a variety of newer and older model cars.

At the beginning of the school year, the students were given a budget of $8,000 to design, assemble and test their invention. Including the cost of the back half of a 1984 compact car used for testing, the students said they spent roughly half that amount to complete the Main Squeeze project. They plan to patent their prototype and look for a company interested in mass-producing the device.

The child safety seat installer was one of 11 Johns Hopkins projects completed this year by undergraduates in the Senior Design Project course. The class is taught by Andrew F. Conn, a Johns Hopkins graduate with more than 30 years of experience in public and private research and development. Each team of three or four students, working within budgets of up to $10,000, had to design a device, purchase or fabricate the parts, and assemble the final product. Corporations, government agencies and nonprofit groups provided the assignments and funding. The course is traditionally a well-received hands-on engineering experience for Johns Hopkins undergraduates.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/
http://www.me.jhu.edu
http://www.jhsph.edu/Research/Centers/CIRP

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>