Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New design renders passenger trains handicapped-accessible, compatible with freight trains


As the deadline for compliance with the Americans with Disabilities Act draws closer, the commuter and passenger trains used in large swaths of the United States remain inaccessible to passengers in wheelchairs. Meanwhile, the elevated platforms many regional rail systems have erected to address this problem have created another, forcing bulky freight shipments off the rails and onto some of the busiest roadways in the nation.

Enter an engineering professor from the University of Pennsylvania who has designed a new train car that’s fully accessible to disabled passengers, compatible with freight trains and spacious enough to carry nearly 40 percent more passengers. The university has filed for patent protection.

"Current methods for boarding mobility-impaired passengers on commuter and intercity railroad trains are unsatisfactory from almost every perspective," said Edward K. Morlok, a professor of transportation and systems engineering. "The methods are demeaning to those passengers, create problems through delays and staffing requirements and can seriously interfere with freight shipping."

Problems arise when two different levels of platforms are found alongside the same set of tracks, a situation common in the northeastern U.S. Older low-level platforms deny access to disabled passengers, who cannot mount stairs to enter cars. Newer high-level platforms block the passage of freight trains, funneling truck traffic onto congested highways.

"With the ADA mandates coming into play, the conflict between universal accessibility and freight service is likely to worsen," Morlok said. "It’s a struggle with serious quality-of-life implications for many of our major cities."

Morlok’s answer to this dilemma is a split-level car divided into three sections, with the two ends at the level of a high platform (four feet above the rails) and the longer middle portion accessible from lower platforms (eight inches above the rails). Doors are situated at both levels, opening only at the appropriate stations, and a small lift within the car permits disabled passengers to move between levels.

Because the central portion of the car is lower, a second level can be added above it. To fit within railroad height restrictions in the Northeast, the double-deck levels are nested together to yield full headroom over aisles. The tri-level configuration carries some 130 passengers, compared to about 94 in current-generation cars with similarly wide seats.

"This solution is effective because it allows mobility-impaired passengers to quickly and safely board and exit railcars with little or no special efforts on the part of train crews," Morlok said. "Also, by making low-level platforms accessible to these passengers, commuter rail systems could abolish the high-level platforms where they impede freight traffic."

Morlok estimates that by more rapidly loading and unloading passengers, his design could shave 6 percent off the time it takes a commuter train to run its route and boost ridership 2 to 4 percent. Because fewer staffers would be required to assist passengers as they board and alight, the new design could slash train staffing costs by up to a third.

"All the evidence suggests smart operators will more than offset that by increasing train frequency -- a win-win for labor, the railroad and the public," he said.

Morlok has also developed a second car design whose vestibule features a stairwell that can rotate for access to either high or low platforms. Such a design would save considerable time for trains stopping at both types of platform; currently most such trains have to be reconfigured manually by conductors. It would also boost safety, since exterior doors could be added.

Steve Bradt | EurekAlert!
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>