Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No time to get bored at bus stops

25.02.2003


The public transport authority for the Bizkaian capital of Bilbao and the surrounding area is intent on keeping the service efficient and reliable. To aid them in the task it has commissioned the Etra Norte company to incorporate a GPS (Global Positioning System) into the Bizkaibus fleet of buses. In this way, they can monitor the situation of each vehicle continuously and, at any time, know the exact time it will arrive at a bus stop. Moreover, the application of the system allows changes in the scheduled route to be made. if the situation requires, keeping the travelling public always informed, of course.



The Global Positioning System is based on the reception of signals from a number of satellites with the aim of fixing the exact position of an object, a bus in this case. It involves a sophisticated system of orientation and navigation, receiving and processing the information transmitted from a constellation of 24 satellites in position at an altitude of some 20,000 kilometres above the earth’s surface.

The buses have a GPS receiver on board. If the bus is travelling on a route that is located by three of these satellites, then their signals are received by the receiver, these signals are processed and the position of the bus is automatically determined. The problem arises when the vehicle cannot be “seen” directly by the satellites (for example, in tunnels or very narrow urban streets). The coverage of the GPS system on urban routes is between 50% and 60%. This situation has put the onus on the transport authority managers to take further measures to keep the position of all their vehicles constantly monitored.


Location of the bus
There are three factors involved in locating the exact position of the bus. In the first place we have the GPS positioning system as outlined above, secondly the vehicle wheel revolution count and thirdly, the bus the door opening mechanism as a confirmation of its position. This last factor operates in such a way that, when the doors open, the on-board computer checks the distance travelled and compares it with the distance that it theoretically, according to the schedule, should have travelled.

Thus, the information offered by these three factors is received at a central control and, once processed, is shown on the electronic map. All displays are refreshed every 20 seconds with the Central Control computers continuously receiving information from the buses on their position. Such information allows route changes to be made in any emergency situation. Moreover, communicating such information to the driver by radio or written message, also means passengers can be kept up-dated.

Keeping the travelling public informed
At the main bus stops in the transport system information panels for the public can be seen. By means of these display panels the service customer has information in real time, the time for the next bus to arrive. Also, over the next year, the transport authorities will be sending SMS messages on en-route incidents to those users who ask for such information and will be offering the possibility of consulting vehicle positions on Interne

Contact :
Iñaki Lombardía
Bizkaiko Foru Aldundia
inaki.lombardia@bizkaia.net
(+34) 944068574

Iñaki Lombardía | Basque research
Further information:
http://web.bizkaia.net

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>