Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


No time to get bored at bus stops


The public transport authority for the Bizkaian capital of Bilbao and the surrounding area is intent on keeping the service efficient and reliable. To aid them in the task it has commissioned the Etra Norte company to incorporate a GPS (Global Positioning System) into the Bizkaibus fleet of buses. In this way, they can monitor the situation of each vehicle continuously and, at any time, know the exact time it will arrive at a bus stop. Moreover, the application of the system allows changes in the scheduled route to be made. if the situation requires, keeping the travelling public always informed, of course.

The Global Positioning System is based on the reception of signals from a number of satellites with the aim of fixing the exact position of an object, a bus in this case. It involves a sophisticated system of orientation and navigation, receiving and processing the information transmitted from a constellation of 24 satellites in position at an altitude of some 20,000 kilometres above the earth’s surface.

The buses have a GPS receiver on board. If the bus is travelling on a route that is located by three of these satellites, then their signals are received by the receiver, these signals are processed and the position of the bus is automatically determined. The problem arises when the vehicle cannot be “seen” directly by the satellites (for example, in tunnels or very narrow urban streets). The coverage of the GPS system on urban routes is between 50% and 60%. This situation has put the onus on the transport authority managers to take further measures to keep the position of all their vehicles constantly monitored.

Location of the bus
There are three factors involved in locating the exact position of the bus. In the first place we have the GPS positioning system as outlined above, secondly the vehicle wheel revolution count and thirdly, the bus the door opening mechanism as a confirmation of its position. This last factor operates in such a way that, when the doors open, the on-board computer checks the distance travelled and compares it with the distance that it theoretically, according to the schedule, should have travelled.

Thus, the information offered by these three factors is received at a central control and, once processed, is shown on the electronic map. All displays are refreshed every 20 seconds with the Central Control computers continuously receiving information from the buses on their position. Such information allows route changes to be made in any emergency situation. Moreover, communicating such information to the driver by radio or written message, also means passengers can be kept up-dated.

Keeping the travelling public informed
At the main bus stops in the transport system information panels for the public can be seen. By means of these display panels the service customer has information in real time, the time for the next bus to arrive. Also, over the next year, the transport authorities will be sending SMS messages on en-route incidents to those users who ask for such information and will be offering the possibility of consulting vehicle positions on Interne

Contact :
Iñaki Lombardía
Bizkaiko Foru Aldundia
(+34) 944068574

Iñaki Lombardía | Basque research
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>