Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Plan to Connect Petrol Stations to Natural Gas Supply to Fuel Hydrogen Powered Cars

14.02.2003


Researchers at the University of Warwick’s Warwick Process Technology Group are leading a programme called “Hydrofueler” to develop technology to connect petrol stations to the normal natural gas supply to fuel hydrogen powered vehicles. The 2.8 million euro EC funded three year research programme has already drawn interest from Exxon Mobil, and BMW.



One of the problems with using hydrogen powered cars is how do you keep their fuel cells supplied with a ready source of hydrogen? The Warwick researchers believe that much of the necessary infrastructure already exists – the new technology can be fitted to pre-existing filling stations who will then use it to produce hydrogen from the normal pre-existing natural gas pipeline supply system.

To do this however you need to resolve a number of problems. In particular how to produce the hydrogen from that natural gas in a confined space, using a simple automated remotely controlled process. Obviously very large scale industrial processes already exist to produce hydrogen from natural gas but these technologies cannot be scaled down to compact size needed to be practical in a filling station context and the costs of using these processes would be prohibitive.


The new University of Warwick research solves these problems by a combination of innovative heat exchange technology, novel ways of managing and using heat and pressure within a reactor, novel compact plated reactor technology, and the use of new coated nanocrystaline catalysts to greatly increase the efficiency of the reactions. These techniques will allow the researchers to develop a reactor around the size of three average office desks which can be used in the confined space available on pre-existing petrol station forecourts and which will produce hydrogen at a cost effective rate and without any emissions problems.

The research will draw on technology developed by University of Warwick Process Technology Group researcher Dr Ashok Bhattacharya, and the following research partners: Chart Heat Exchangers Ltd in Wolverhampton, England; France’s Commissariat a l’Energie Atomique; Norway’s Foundation for Technical and Industrial Research in Strindveien (SINTEF); The National Research Council of Italy; and catalyst specialists Dytech in Sheffield, England.

Another advantage of the technology proposed by the Warwick team is that process employs a number of stages at which hydrogen reaches different rates of purity. This is ideal, as different sorts of fuel cell will require different mixes of hydrogen. Thus the technology proposed can in one reactor simultaneously produce what one might describe as 2, 3 and 4 star hydrogen!

The researchers are also considering using the technology to carry out hydrogen production within car engines and also as a possible replacement for large industrial hydrogen production processes.

Peter Dunn | alfa
Further information:
http://www.communicate.warwick.ac.uk/index.cfm?page=pressrelease&id=887

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>