Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Plan to Connect Petrol Stations to Natural Gas Supply to Fuel Hydrogen Powered Cars

14.02.2003


Researchers at the University of Warwick’s Warwick Process Technology Group are leading a programme called “Hydrofueler” to develop technology to connect petrol stations to the normal natural gas supply to fuel hydrogen powered vehicles. The 2.8 million euro EC funded three year research programme has already drawn interest from Exxon Mobil, and BMW.



One of the problems with using hydrogen powered cars is how do you keep their fuel cells supplied with a ready source of hydrogen? The Warwick researchers believe that much of the necessary infrastructure already exists – the new technology can be fitted to pre-existing filling stations who will then use it to produce hydrogen from the normal pre-existing natural gas pipeline supply system.

To do this however you need to resolve a number of problems. In particular how to produce the hydrogen from that natural gas in a confined space, using a simple automated remotely controlled process. Obviously very large scale industrial processes already exist to produce hydrogen from natural gas but these technologies cannot be scaled down to compact size needed to be practical in a filling station context and the costs of using these processes would be prohibitive.


The new University of Warwick research solves these problems by a combination of innovative heat exchange technology, novel ways of managing and using heat and pressure within a reactor, novel compact plated reactor technology, and the use of new coated nanocrystaline catalysts to greatly increase the efficiency of the reactions. These techniques will allow the researchers to develop a reactor around the size of three average office desks which can be used in the confined space available on pre-existing petrol station forecourts and which will produce hydrogen at a cost effective rate and without any emissions problems.

The research will draw on technology developed by University of Warwick Process Technology Group researcher Dr Ashok Bhattacharya, and the following research partners: Chart Heat Exchangers Ltd in Wolverhampton, England; France’s Commissariat a l’Energie Atomique; Norway’s Foundation for Technical and Industrial Research in Strindveien (SINTEF); The National Research Council of Italy; and catalyst specialists Dytech in Sheffield, England.

Another advantage of the technology proposed by the Warwick team is that process employs a number of stages at which hydrogen reaches different rates of purity. This is ideal, as different sorts of fuel cell will require different mixes of hydrogen. Thus the technology proposed can in one reactor simultaneously produce what one might describe as 2, 3 and 4 star hydrogen!

The researchers are also considering using the technology to carry out hydrogen production within car engines and also as a possible replacement for large industrial hydrogen production processes.

Peter Dunn | alfa
Further information:
http://www.communicate.warwick.ac.uk/index.cfm?page=pressrelease&id=887

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>