Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Plan to Connect Petrol Stations to Natural Gas Supply to Fuel Hydrogen Powered Cars

14.02.2003


Researchers at the University of Warwick’s Warwick Process Technology Group are leading a programme called “Hydrofueler” to develop technology to connect petrol stations to the normal natural gas supply to fuel hydrogen powered vehicles. The 2.8 million euro EC funded three year research programme has already drawn interest from Exxon Mobil, and BMW.



One of the problems with using hydrogen powered cars is how do you keep their fuel cells supplied with a ready source of hydrogen? The Warwick researchers believe that much of the necessary infrastructure already exists – the new technology can be fitted to pre-existing filling stations who will then use it to produce hydrogen from the normal pre-existing natural gas pipeline supply system.

To do this however you need to resolve a number of problems. In particular how to produce the hydrogen from that natural gas in a confined space, using a simple automated remotely controlled process. Obviously very large scale industrial processes already exist to produce hydrogen from natural gas but these technologies cannot be scaled down to compact size needed to be practical in a filling station context and the costs of using these processes would be prohibitive.


The new University of Warwick research solves these problems by a combination of innovative heat exchange technology, novel ways of managing and using heat and pressure within a reactor, novel compact plated reactor technology, and the use of new coated nanocrystaline catalysts to greatly increase the efficiency of the reactions. These techniques will allow the researchers to develop a reactor around the size of three average office desks which can be used in the confined space available on pre-existing petrol station forecourts and which will produce hydrogen at a cost effective rate and without any emissions problems.

The research will draw on technology developed by University of Warwick Process Technology Group researcher Dr Ashok Bhattacharya, and the following research partners: Chart Heat Exchangers Ltd in Wolverhampton, England; France’s Commissariat a l’Energie Atomique; Norway’s Foundation for Technical and Industrial Research in Strindveien (SINTEF); The National Research Council of Italy; and catalyst specialists Dytech in Sheffield, England.

Another advantage of the technology proposed by the Warwick team is that process employs a number of stages at which hydrogen reaches different rates of purity. This is ideal, as different sorts of fuel cell will require different mixes of hydrogen. Thus the technology proposed can in one reactor simultaneously produce what one might describe as 2, 3 and 4 star hydrogen!

The researchers are also considering using the technology to carry out hydrogen production within car engines and also as a possible replacement for large industrial hydrogen production processes.

Peter Dunn | alfa
Further information:
http://www.communicate.warwick.ac.uk/index.cfm?page=pressrelease&id=887

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>