Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A bright idea: Roadside beacons warn motorists of danger ahead

16.01.2003


Fog-related pileups such as last month’s 71-car collision in Texas could become a thing of the past with roadside "smart beacons" that use the latest wireless technology to sense wrecks and warn motorists of danger ahead.



So say three University of Florida engineering researchers who this month applied for a patent on the concept for the beacons, which would be placed at regular intervals on roadside rights of way and would flash red or yellow lights to indicate a hazard ahead.

Projected to be roughly the size and shape of existing highway reflectors, the ground-level smart beacons also could be used to designate evacuation routes during hurricanes and other emergencies, urge lane clearing for oncoming rescue vehicles – even help motorists avoid traffic jams by directing them to less-clogged alternative routes.


"The sensors will automatically determine if a crash has occurred," said Dave Bloomquist, a UF associate professor of civil engineering. "They’ll then transmit that information to sensors a mile or two up the road, warning vehicles that haven’t yet reached the crash site."

Although the researchers have not yet built a prototype, they say the beacons likely will draw on the same wireless technology – ultra-wideband radar and communication – now being developed for collision-avoidance systems in cars and trucks.

Ultra-wideband, or UWB, broadcasts extremely rapid pulses of radio energy. By measuring the amount of time required for the pulses to return, the system can be used as radar, thereby precisely determining the location of nearby objects as well as their speed, Bloomquist said.

UWB-based systems onboard vehicles now being built and tested are intended to help motorists avoid collisions by warning the driver of nearby cars or obstacles, Bloomquist said. Such systems also sense impending collisions, then tighten seat belts and deploy airbags at the proper pressure, thereby reducing injury to occupants, he said.

Longer-range radar systems based on a different technology already are being used in so-called adaptive cruise-control systems, which gauge the speed of nearby traffic and adjust a car’s speed to flow with the traffic. Adaptive cruise control is now available in some Jaguars, BMWs and other high-end luxury vehicles. Bloomquist said adaptive cruise control, onboard navigation systems, UWB radar and other technologies are the first components of an emerging "intelligent transportation system" expected to make driving far safer and more efficient. Nationwide, motor vehicle crashes resulted in 37,795 fatalities and over 2 million injuries in 2001, according to the U.S. Department of Transportation.

The smart-beacon system fits into this trend. Bloomquist, Mike McVay, a professor of civil and coastal engineering, and Erik Larsson, a UF assistant professor of electrical and computer engineering, say the beacons will consist of solar cells for electricity; batteries; green, red and yellow lights; UWB radar; and wireless communication electronics – all in a package the size of a deck of cards.

Placed at 100-foot intervals along new or existing roads, the beacons would monitor traffic flow continuously. When they sensed stopped or dramatically slowed vehicles, they would send that information to beacons down the road, which would warn motorists of trouble ahead using flashing colored lights.

The automatic system would require no human intervention, although law enforcement and rescue personnel could control it remotely, or shut it on or off from the roadside. Officials also could use it to program evacuation routes during hurricanes or alternative detour routes around accidents or traffic jams, the researchers said.

"The highway patrol can say, ’Look, down the road there’s a toxic spill, so let’s change the color of the lights and re-route the traffic away from the incident,’" Bloomquist said.

Stephanie Faul, communications director for the Washington D.C.-based AAA Foundation for Traffic Safety, said the smart beacons seem like a good idea to combat fog-related pileups. However, she cautioned the beacons would need to be tested on a real-world highway to ensure they had the intended effect. Also, she said, officials would need to educate motorists about how and when to respond when they saw the flashing lights.

"Giving motorists information is terrific," she said, but motorists also would have to respond appropriately if the system is to be useful.

Bloomquist said it’s even possible the beacons could be used to time traffic lights. For example, the beacons would monitor the number of vehicles stopped in each direction and adjust the duration of green and red lights based on the longest lines, he said.

Hoping to acquire funding support for development and testing of a prototype beacon and the deployment of a test beacon system, the researchers are scheduled to present their idea to Florida Department of Transportation officials later this week. They said the technology to build the sensors is available now. Bloomquist said he hopes to have a prototype system built and installed within 18 months, with commercial development following in about a year. "The chip sets are already out there," McVay said. "What has to be done is to adapt the technology to this particular application."

Price depends on production but if made in large quantities, the beacons probably would cost around $30 each, McVay said.

Writer: Aaron Hoover

Dave Bloomquist | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>