Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A bright idea: Roadside beacons warn motorists of danger ahead

16.01.2003


Fog-related pileups such as last month’s 71-car collision in Texas could become a thing of the past with roadside "smart beacons" that use the latest wireless technology to sense wrecks and warn motorists of danger ahead.



So say three University of Florida engineering researchers who this month applied for a patent on the concept for the beacons, which would be placed at regular intervals on roadside rights of way and would flash red or yellow lights to indicate a hazard ahead.

Projected to be roughly the size and shape of existing highway reflectors, the ground-level smart beacons also could be used to designate evacuation routes during hurricanes and other emergencies, urge lane clearing for oncoming rescue vehicles – even help motorists avoid traffic jams by directing them to less-clogged alternative routes.


"The sensors will automatically determine if a crash has occurred," said Dave Bloomquist, a UF associate professor of civil engineering. "They’ll then transmit that information to sensors a mile or two up the road, warning vehicles that haven’t yet reached the crash site."

Although the researchers have not yet built a prototype, they say the beacons likely will draw on the same wireless technology – ultra-wideband radar and communication – now being developed for collision-avoidance systems in cars and trucks.

Ultra-wideband, or UWB, broadcasts extremely rapid pulses of radio energy. By measuring the amount of time required for the pulses to return, the system can be used as radar, thereby precisely determining the location of nearby objects as well as their speed, Bloomquist said.

UWB-based systems onboard vehicles now being built and tested are intended to help motorists avoid collisions by warning the driver of nearby cars or obstacles, Bloomquist said. Such systems also sense impending collisions, then tighten seat belts and deploy airbags at the proper pressure, thereby reducing injury to occupants, he said.

Longer-range radar systems based on a different technology already are being used in so-called adaptive cruise-control systems, which gauge the speed of nearby traffic and adjust a car’s speed to flow with the traffic. Adaptive cruise control is now available in some Jaguars, BMWs and other high-end luxury vehicles. Bloomquist said adaptive cruise control, onboard navigation systems, UWB radar and other technologies are the first components of an emerging "intelligent transportation system" expected to make driving far safer and more efficient. Nationwide, motor vehicle crashes resulted in 37,795 fatalities and over 2 million injuries in 2001, according to the U.S. Department of Transportation.

The smart-beacon system fits into this trend. Bloomquist, Mike McVay, a professor of civil and coastal engineering, and Erik Larsson, a UF assistant professor of electrical and computer engineering, say the beacons will consist of solar cells for electricity; batteries; green, red and yellow lights; UWB radar; and wireless communication electronics – all in a package the size of a deck of cards.

Placed at 100-foot intervals along new or existing roads, the beacons would monitor traffic flow continuously. When they sensed stopped or dramatically slowed vehicles, they would send that information to beacons down the road, which would warn motorists of trouble ahead using flashing colored lights.

The automatic system would require no human intervention, although law enforcement and rescue personnel could control it remotely, or shut it on or off from the roadside. Officials also could use it to program evacuation routes during hurricanes or alternative detour routes around accidents or traffic jams, the researchers said.

"The highway patrol can say, ’Look, down the road there’s a toxic spill, so let’s change the color of the lights and re-route the traffic away from the incident,’" Bloomquist said.

Stephanie Faul, communications director for the Washington D.C.-based AAA Foundation for Traffic Safety, said the smart beacons seem like a good idea to combat fog-related pileups. However, she cautioned the beacons would need to be tested on a real-world highway to ensure they had the intended effect. Also, she said, officials would need to educate motorists about how and when to respond when they saw the flashing lights.

"Giving motorists information is terrific," she said, but motorists also would have to respond appropriately if the system is to be useful.

Bloomquist said it’s even possible the beacons could be used to time traffic lights. For example, the beacons would monitor the number of vehicles stopped in each direction and adjust the duration of green and red lights based on the longest lines, he said.

Hoping to acquire funding support for development and testing of a prototype beacon and the deployment of a test beacon system, the researchers are scheduled to present their idea to Florida Department of Transportation officials later this week. They said the technology to build the sensors is available now. Bloomquist said he hopes to have a prototype system built and installed within 18 months, with commercial development following in about a year. "The chip sets are already out there," McVay said. "What has to be done is to adapt the technology to this particular application."

Price depends on production but if made in large quantities, the beacons probably would cost around $30 each, McVay said.

Writer: Aaron Hoover

Dave Bloomquist | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Transportation and Logistics:

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Efficient and intelligent: Drones get to grips with planning the delivery of goods
12.07.2017 | Alpen-Adria-Universität Klagenfurt

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>