Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A bright idea: Roadside beacons warn motorists of danger ahead

16.01.2003


Fog-related pileups such as last month’s 71-car collision in Texas could become a thing of the past with roadside "smart beacons" that use the latest wireless technology to sense wrecks and warn motorists of danger ahead.



So say three University of Florida engineering researchers who this month applied for a patent on the concept for the beacons, which would be placed at regular intervals on roadside rights of way and would flash red or yellow lights to indicate a hazard ahead.

Projected to be roughly the size and shape of existing highway reflectors, the ground-level smart beacons also could be used to designate evacuation routes during hurricanes and other emergencies, urge lane clearing for oncoming rescue vehicles – even help motorists avoid traffic jams by directing them to less-clogged alternative routes.


"The sensors will automatically determine if a crash has occurred," said Dave Bloomquist, a UF associate professor of civil engineering. "They’ll then transmit that information to sensors a mile or two up the road, warning vehicles that haven’t yet reached the crash site."

Although the researchers have not yet built a prototype, they say the beacons likely will draw on the same wireless technology – ultra-wideband radar and communication – now being developed for collision-avoidance systems in cars and trucks.

Ultra-wideband, or UWB, broadcasts extremely rapid pulses of radio energy. By measuring the amount of time required for the pulses to return, the system can be used as radar, thereby precisely determining the location of nearby objects as well as their speed, Bloomquist said.

UWB-based systems onboard vehicles now being built and tested are intended to help motorists avoid collisions by warning the driver of nearby cars or obstacles, Bloomquist said. Such systems also sense impending collisions, then tighten seat belts and deploy airbags at the proper pressure, thereby reducing injury to occupants, he said.

Longer-range radar systems based on a different technology already are being used in so-called adaptive cruise-control systems, which gauge the speed of nearby traffic and adjust a car’s speed to flow with the traffic. Adaptive cruise control is now available in some Jaguars, BMWs and other high-end luxury vehicles. Bloomquist said adaptive cruise control, onboard navigation systems, UWB radar and other technologies are the first components of an emerging "intelligent transportation system" expected to make driving far safer and more efficient. Nationwide, motor vehicle crashes resulted in 37,795 fatalities and over 2 million injuries in 2001, according to the U.S. Department of Transportation.

The smart-beacon system fits into this trend. Bloomquist, Mike McVay, a professor of civil and coastal engineering, and Erik Larsson, a UF assistant professor of electrical and computer engineering, say the beacons will consist of solar cells for electricity; batteries; green, red and yellow lights; UWB radar; and wireless communication electronics – all in a package the size of a deck of cards.

Placed at 100-foot intervals along new or existing roads, the beacons would monitor traffic flow continuously. When they sensed stopped or dramatically slowed vehicles, they would send that information to beacons down the road, which would warn motorists of trouble ahead using flashing colored lights.

The automatic system would require no human intervention, although law enforcement and rescue personnel could control it remotely, or shut it on or off from the roadside. Officials also could use it to program evacuation routes during hurricanes or alternative detour routes around accidents or traffic jams, the researchers said.

"The highway patrol can say, ’Look, down the road there’s a toxic spill, so let’s change the color of the lights and re-route the traffic away from the incident,’" Bloomquist said.

Stephanie Faul, communications director for the Washington D.C.-based AAA Foundation for Traffic Safety, said the smart beacons seem like a good idea to combat fog-related pileups. However, she cautioned the beacons would need to be tested on a real-world highway to ensure they had the intended effect. Also, she said, officials would need to educate motorists about how and when to respond when they saw the flashing lights.

"Giving motorists information is terrific," she said, but motorists also would have to respond appropriately if the system is to be useful.

Bloomquist said it’s even possible the beacons could be used to time traffic lights. For example, the beacons would monitor the number of vehicles stopped in each direction and adjust the duration of green and red lights based on the longest lines, he said.

Hoping to acquire funding support for development and testing of a prototype beacon and the deployment of a test beacon system, the researchers are scheduled to present their idea to Florida Department of Transportation officials later this week. They said the technology to build the sensors is available now. Bloomquist said he hopes to have a prototype system built and installed within 18 months, with commercial development following in about a year. "The chip sets are already out there," McVay said. "What has to be done is to adapt the technology to this particular application."

Price depends on production but if made in large quantities, the beacons probably would cost around $30 each, McVay said.

Writer: Aaron Hoover

Dave Bloomquist | EurekAlert!
Further information:
http://www.ufl.edu/

More articles from Transportation and Logistics:

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>