Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Greenwich scientists address evacuation concerns over futuristic ‘flying wing’ aircraft

09.07.2008
University of Greenwich researchers will this week present details of how 'Flying Wing' passenger aircraft can be evacuated safely by over 1000 passengers.

Speaking at a conference on the future of aircraft design, Professor Ed Galea will explain how the university's Fire Safety Engineering Group has used innovative mathematical modelling techniques to overcome safety concerns about the radical new aircraft concept.

"With eight aisles, the 'flying wing' is almost as wide as it is long, making it more like a flying auditorium than a traditional tubular aircraft," says Professor Galea. "With a capacity of over 1000 passengers, it is significantly bigger than the largest passenger planes currently flying, compounding the evacuation challenges faced by its designers, including the industry benchmark 90 second evacuation certification trial."

The break-through is an important technological step in the development of this distinctive super-plane concept. With eight aisles and up to 20 exits on three sides, its futuristic 'delta' shape resembles a giant flying wing. While military variants of 'blended wing' aircraft technology, such as the US Stealth bombers, routinely take to the skies, they only carry a small crew and do not have to satisfy stringent commercial aviation safety regulations such as the 90 second evacuation certification test.

The University of Greenwich team drew on its world-leading expertise in aircraft evacuation and fire modelling to simulate how air passengers behave in a crisis, and how fire, smoke, toxic gases and heat spread through a burning aircraft. The challenges posed by the Flying Wing’s vast interior required major re-engineering of the team's aircraft evacuation model, airEXODUS. A sophisticated new version of the software was developed to predict how passengers behave in the new expansive layouts and interact with the large number of internal aisles to eventually find an exit and a way out. Evacuation trials using a large scale cabin mock-up and over 700 volunteers were used to verify that the new model made realistic predictions.

"We combined our fire simulation and passenger evacuation models to answer the fundamental question about this aircraft; can passengers and crew get out safely?" continues Professor Galea. “This type of safety analysis potentially goes far beyond traditional evacuation tests using volunteers. Embedding the experience of aviation accidents from around the world, it accounts for how real people react in a crisis by swapping aisles, climbing over seats, reacting to fire and smoke and so on."

Nick Davison | alfa
Further information:
http://www.gre.ac.uk
http://www.gre.ac.uk/news/articles/latest/a1558---evacuation-concerns

More articles from Transportation and Logistics:

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>