Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Greenwich scientists address evacuation concerns over futuristic ‘flying wing’ aircraft

09.07.2008
University of Greenwich researchers will this week present details of how 'Flying Wing' passenger aircraft can be evacuated safely by over 1000 passengers.

Speaking at a conference on the future of aircraft design, Professor Ed Galea will explain how the university's Fire Safety Engineering Group has used innovative mathematical modelling techniques to overcome safety concerns about the radical new aircraft concept.

"With eight aisles, the 'flying wing' is almost as wide as it is long, making it more like a flying auditorium than a traditional tubular aircraft," says Professor Galea. "With a capacity of over 1000 passengers, it is significantly bigger than the largest passenger planes currently flying, compounding the evacuation challenges faced by its designers, including the industry benchmark 90 second evacuation certification trial."

The break-through is an important technological step in the development of this distinctive super-plane concept. With eight aisles and up to 20 exits on three sides, its futuristic 'delta' shape resembles a giant flying wing. While military variants of 'blended wing' aircraft technology, such as the US Stealth bombers, routinely take to the skies, they only carry a small crew and do not have to satisfy stringent commercial aviation safety regulations such as the 90 second evacuation certification test.

The University of Greenwich team drew on its world-leading expertise in aircraft evacuation and fire modelling to simulate how air passengers behave in a crisis, and how fire, smoke, toxic gases and heat spread through a burning aircraft. The challenges posed by the Flying Wing’s vast interior required major re-engineering of the team's aircraft evacuation model, airEXODUS. A sophisticated new version of the software was developed to predict how passengers behave in the new expansive layouts and interact with the large number of internal aisles to eventually find an exit and a way out. Evacuation trials using a large scale cabin mock-up and over 700 volunteers were used to verify that the new model made realistic predictions.

"We combined our fire simulation and passenger evacuation models to answer the fundamental question about this aircraft; can passengers and crew get out safely?" continues Professor Galea. “This type of safety analysis potentially goes far beyond traditional evacuation tests using volunteers. Embedding the experience of aviation accidents from around the world, it accounts for how real people react in a crisis by swapping aisles, climbing over seats, reacting to fire and smoke and so on."

Nick Davison | alfa
Further information:
http://www.gre.ac.uk
http://www.gre.ac.uk/news/articles/latest/a1558---evacuation-concerns

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>