Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Free-flowing traffic with ORINOKO

How can traffic be monitored and controlled more effectively? In the ORINOKO project, scientists have developed methods of determining the traffic situation across a wide area, and have refined processes that enable traffic to be optimally channeled.

Traffic jams on the way to work, to the shops or to a holiday destination – a common experience for most of us. Traffic management systems can provide help. Various concepts and measures are being tested, for example in the transport research project ORINOKO (Operative Regional Integrated and Optimized Corridor Control).

The project received funding to the tune of almost three million euros from the German federal ministry of economics and technology BMWi over a period of about three years.

The Fraunhofer Institute for Transportation and Infrastructure Systems IVI in Dresden was among the project partners. The IVI team led by Ulf Jung and Georg Förster performed a variety of tasks. “One thing we did was set up a central database containing a digital map of the road network.

A vast amount of relevant measurement data flows continuously into this database,” says Georg Förster. “We also provided software interfaces that enable dynamic data from a variety of sources, such as journey times, traffic volume or tailback lengths, to be used for control and information purposes within the scope of the traffic management system.”

The team is particularly proud at having established a sensor system based on video cameras, which was installed and tested on a trial basis at ten different sites in Nuremberg over the past few months. It can automatically determine certain traffic statistics such as the number of vehicles on the roads or the length of a tailback. These values are continuously fed into a central computer system where they are processed and used to control the traffic. For instance, traffic lights are switched to suit the situation observed by the cameras.

“This combination of advanced computer technology and the image processing software developed by us delivers data of a similar quality to those of conventional induction loops, but is much cheaper and more flexible to use,” says IVI head of department Ulf Jung. The video detector can determine the number of vehicles, their speed, the length of a tailback, and other factors. At present, it is able to analyze up to six traffic lanes simultaneously.

The recorded images are processed and interpreted in real time on the spot by a small computer connected to the camera module, which then sends the traffic data and live images to a control center. The new system fills the gap between the established but expensive induction loops and the journey time measurements obtained using sensors in taxis. The video detectors are not only cost-efficient but also deliver a continuous stream of reliable data.

Ulf Jung | alfa
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>