Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free-flowing traffic with ORINOKO

14.05.2008
How can traffic be monitored and controlled more effectively? In the ORINOKO project, scientists have developed methods of determining the traffic situation across a wide area, and have refined processes that enable traffic to be optimally channeled.

Traffic jams on the way to work, to the shops or to a holiday destination – a common experience for most of us. Traffic management systems can provide help. Various concepts and measures are being tested, for example in the transport research project ORINOKO (Operative Regional Integrated and Optimized Corridor Control).

The project received funding to the tune of almost three million euros from the German federal ministry of economics and technology BMWi over a period of about three years.

The Fraunhofer Institute for Transportation and Infrastructure Systems IVI in Dresden was among the project partners. The IVI team led by Ulf Jung and Georg Förster performed a variety of tasks. “One thing we did was set up a central database containing a digital map of the road network.

A vast amount of relevant measurement data flows continuously into this database,” says Georg Förster. “We also provided software interfaces that enable dynamic data from a variety of sources, such as journey times, traffic volume or tailback lengths, to be used for control and information purposes within the scope of the traffic management system.”

The team is particularly proud at having established a sensor system based on video cameras, which was installed and tested on a trial basis at ten different sites in Nuremberg over the past few months. It can automatically determine certain traffic statistics such as the number of vehicles on the roads or the length of a tailback. These values are continuously fed into a central computer system where they are processed and used to control the traffic. For instance, traffic lights are switched to suit the situation observed by the cameras.

“This combination of advanced computer technology and the image processing software developed by us delivers data of a similar quality to those of conventional induction loops, but is much cheaper and more flexible to use,” says IVI head of department Ulf Jung. The video detector can determine the number of vehicles, their speed, the length of a tailback, and other factors. At present, it is able to analyze up to six traffic lanes simultaneously.

The recorded images are processed and interpreted in real time on the spot by a small computer connected to the camera module, which then sends the traffic data and live images to a control center. The new system fills the gap between the established but expensive induction loops and the journey time measurements obtained using sensors in taxis. The video detectors are not only cost-efficient but also deliver a continuous stream of reliable data.

Ulf Jung | alfa
Further information:
http://www.fraunhofer.de/EN

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>