Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free-flowing traffic with ORINOKO

14.05.2008
How can traffic be monitored and controlled more effectively? In the ORINOKO project, scientists have developed methods of determining the traffic situation across a wide area, and have refined processes that enable traffic to be optimally channeled.

Traffic jams on the way to work, to the shops or to a holiday destination – a common experience for most of us. Traffic management systems can provide help. Various concepts and measures are being tested, for example in the transport research project ORINOKO (Operative Regional Integrated and Optimized Corridor Control).

The project received funding to the tune of almost three million euros from the German federal ministry of economics and technology BMWi over a period of about three years.

The Fraunhofer Institute for Transportation and Infrastructure Systems IVI in Dresden was among the project partners. The IVI team led by Ulf Jung and Georg Förster performed a variety of tasks. “One thing we did was set up a central database containing a digital map of the road network.

A vast amount of relevant measurement data flows continuously into this database,” says Georg Förster. “We also provided software interfaces that enable dynamic data from a variety of sources, such as journey times, traffic volume or tailback lengths, to be used for control and information purposes within the scope of the traffic management system.”

The team is particularly proud at having established a sensor system based on video cameras, which was installed and tested on a trial basis at ten different sites in Nuremberg over the past few months. It can automatically determine certain traffic statistics such as the number of vehicles on the roads or the length of a tailback. These values are continuously fed into a central computer system where they are processed and used to control the traffic. For instance, traffic lights are switched to suit the situation observed by the cameras.

“This combination of advanced computer technology and the image processing software developed by us delivers data of a similar quality to those of conventional induction loops, but is much cheaper and more flexible to use,” says IVI head of department Ulf Jung. The video detector can determine the number of vehicles, their speed, the length of a tailback, and other factors. At present, it is able to analyze up to six traffic lanes simultaneously.

The recorded images are processed and interpreted in real time on the spot by a small computer connected to the camera module, which then sends the traffic data and live images to a control center. The new system fills the gap between the established but expensive induction loops and the journey time measurements obtained using sensors in taxis. The video detectors are not only cost-efficient but also deliver a continuous stream of reliable data.

Ulf Jung | alfa
Further information:
http://www.fraunhofer.de/EN

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>