Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Public Transportation in evolution---using advanced technology for safer roads

08.05.2008
A car navigation system designed for the elderly, wireless car-to-car communication, no more blind spots and more. ITS (Intelligent Transport Systems) is a national project to integrate people, roads and cars with a wireless network for a comfortable and safe car-oriented society.

Public Transportation in evolution---using advanced technology for highly public road traffic

Deep understanding of human nature helps increase public aspects of road traffic

ITS is a general technology that connects people and automobiles

ITS (Intelligent Transport Systems) is a national project to integrate people, roads and cars with a wireless network in order to increase public aspects of road traffic, and to realize a comfortable and safe car-oriented society. ITS services that are presently available include VICS (Vehicle Information and Communication System) that provides traffic information to drivers though car navigation systems, and ETC (Electronic Toll Collection System) on toll roads. Various technologies are used in these services, such as GPS technology, wireless communication technology, and HMI (Human Machine Interface) technology to provide information in an easy-to- understand manner, to name a few.

The human engineering research group of Prof. Kawashima and Assoc. Prof. Daimon also utilizes cognitive engineering and applied psychology to study basic engineering and evaluation methods in adopting ITS. Their laboratory in the B2 floor of the House of Creation and Imagination in Yagami Campus holds a 360-degree driving simulator, rare equipment worldwide which was co-developed with the National Institute for Land and Infrastructure Management. Many experiments are performed to collect and analyze behavior and biological reaction of drivers to further study how to provide literal, visual and phonetic information through on-board equipment of car navigation systems, development of on-road equipment, and also general planning of next-generation traffic information systems.

To meet the needs of all drivers

As a result of the aging society, our country is expected to face serious problems with increasing elderly drivers with poor reflexes and slow comprehension. Assoc. Prof. Daimon says that by using the driving simulator on many elderly drivers, they can collect behavior data of these drivers which will help develop a car navigation system that is easy to understand for the elderly. They also collect evaluation data from women, people with hearing difficulties and non-Japanese. "Which type of drivers require what kind of information in which timing... we are finally prepared to discuss and study these issues." says Prof. Kawashima.

According to Prof. Kawashima, in the future, a "car-to-car communication" system using a wireless network instead of the present way of flashing lights may become available and a "probe car" may appear on the streets to utilize each car as a moving sensor to collect traffic information or road surface information on a snowy day. These new technologies will be based on the enormous amount of evaluation data of "people" accumulated in the Kawashima and Daimon laboratory.

An example of a research theme...."No more blind spots when making right turns!"

For Tetsuya Fukuda (second year level of graduate school), his research theme is safety assistance in making right turns in urban intersections where many accidents occur. When waiting to make a right turn, a truck may be waiting in the opposite lane to also make a right turn, and behind the truck becomes a blind spot and can cause accidents. Therefore, he has come up with the idea of placing a camera above the intersection to provide visual information of the blind spot to the driver's car navigation system. Fukuda, who says he wanted to study something that will help the society, repeats experiments with the driving simulator, dreaming that one day, awful traffic accidents will become a thing of the past

Faculty's Profile

Prof. Hironao Kawashima, Faculty of Science and Technology

Prof. Kawashima finished the Graduate School of Science and Technology with a Ph.D. in 1973. He has been professor of the Department of Administration Engineering since 1992. He has served numerous times as chairperson and/or member of related committees of several ministries, and was awarded by the Minister of Economy, Trade and Industry for promoting international standardization of ITS. He has published books such as "What is ITS----information revolution and car-oriented society" (Iwanami Shoten).

Assoc. Prof. Tatsuru Daimon, Faculty of Science and Technology

Assoc. Prof. Daimon finished the Graduate School of Science and Technology with a Ph.D. in 1995. He continued on with his research at the Institute for Human Science and Biomedical Engineering of the National Institute of Advanced Industrial Science and Technology and the French National Institute for Transport and Safety Research before coming back to Keio University as Assistant Professor of the Department of Administration Engineering of the Faculty of Science and Technology. He became Associate Professor in 2003. Since 2005, he also serves the Ministry of Land, Infrastructure and Transport as a member of a pilot program for safety driving assistance service of the Sangubashi area of the No.4 line of the Metropolitan Expressway.

Center for Research Promotion | ResearchSEA
Further information:
http://www.keio.ac.jp/index-en.html
http://www.researchsea.com

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>