Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology into Heaven

27.03.2008
Everyone on board an Scandinavian Airline System (SAS) plane died when it collided with a light aircraft and exploded in a luggage hanger in Milan in 2001. The smaller plane had taxied wrongly and ended up on the runway where the SAS aircraft was taking off.

The following year, two planes collided in mid-air over Überlingen in the south of Germany on the edge of Lake Constance. One was a Russian passenger flight from Moscow to Barcelona, while the other was a cargo plane heading for Belgium from the Persian Gulf. Seventy-one persons died.

Safety need to be improved

As air transport grows, take-offs become more tightly spaced and more and more planes are circling airports as they wait for permission to land, the potential for disasters increases.

Last year alone, international air traffic grew by 5.9 percent. Parallel to this increase, the minimum distance between aircraft in the air in European airspace has decreased. The minimum vertical distance between aircraft has been halved from 600 metres to 300 for planes flying above 29000 feet. The idea has been to increase airspace capacity by 20 percent. Routes are shortened, and airlines expect to save the huge sum of NOK 30 billion a year in fuel costs alone.

But what above safety up there? In the wake of a number of disasters in the air in 2001 and 2002, the EU took up the problem and resolved that certain aspects of the industry should be studied in detail and evaluated in terms of safety. Several projects were launched under its 6th Framework Programme. One of these was the HASTEC project, which was to develop the next generation of pressure sensors for better aircraft altitude measurement.

Next-generation sensors

Almost three years ago SINTEF and Memscap, a company based in Horten, applied for funding to produce the next generation of precision aircraft altimeters. Together with British and Rumanian partners, the Norwegians were awarded funding for a project worth almost NOK 3 million. The project aims to raise current technology through the next generation of pressure sensors and to produce a sensor platform for the next 20 years.

Today, the partners have almost reached their goal.

“There is a need for aircraft sensors that are more accurate than current models, which are large and reliable, but expensive systems,” says Sigurd Moe of SINTEF ICT. “Among other things, they need to be more stable throughout their life-cycle. The problem with current sensors is that they need to be checked and calibrated regularly, and this is an expensive process since the aircraft needs to be grounded.

Memscap

“Most people are unaware that one of the key components in international aircraft today is based on Norwegian technology,” says Ole Henrik Gusland of Memscap. The company has been producing sensors for the aircraft industry for more than 20 years, and has recently supplied cabin pressure sensors for the Airbus 380 mega-jumbo jet and Boeing's 787 Dreamliner.

The Norwegian company used to be a subsidiary of SensoNor, but was bought up by Memscap SA in 2002. Its product portfolio comprises both high-precision pressure sensors for aircraft and medical pressure sensors.

Two aircraft that have been allocated the same flight corridor need to maintain exactly the correct altitude during the whole flight if they are to avoid problems, explains Gusland. “This means that the altimeters must be correct even if the plane moves through warm and cold air strata, and such accuracy must be maintained throughout the lifetime of the aircraft. On the ground and in the air over Dubai, for example, temperatures can range from plus fifty to minus sixty degrees. Temperature differences of this magnitude are a great challenge for aircraft electronic systems. Airlines want to ground their craft as seldom as possible for calibration.”

MiNaLab

Until recently, Memscap used SensoNor to manufacture silicon chips which are then mounted and encapsulated, but since SensoNor has been bought up by a huge German concern, Memscap has been using SINTEF's Micro and Nanolaboratory for most of its R & D-oriented projects.

“SINTEF is research-oriented, and we regard SINTEF as a small-scale manufacturer and as a supplement to others, because they are close at hand and have a great deal of advanced new equipment for producing sensors,” says Gusland.

Challenges

“When a new sensor chip is being developed, it is important to understand the customer's criteria. These define our frame conditions and set out guidelines for the design. In this case, the fundamental requirement was an extremely stable signal. The sensor must not be affected by external conditions,” says Sigurd Moe of SINTEF ICT.

The problem is that mechanical tensions may develop in the connection with the sensor package itself. The scientists therefore had to produce a silicon based sensor structure in which such tensions would not transmit/propogate into the chip itself. The solution was a spiral silicon element in which the pressure-sensitive part was not affected even if the mounting stretches and drags the element.

SINTEF produces silicon wafers with hundreds of chips on each wafer, several of which are laid on top of each other and glued together before being sawn into chips. Individual chips are then selected and integrated into a sensor package that has been developed by Memscap. The company produces, assembles and tests the sensor package itself.

The first prototype has now been delivered to Memscap by the scientists for further testing and mounting. During the first six months of 2008 these new-technology sensors will be flight tested.

“We believe that the new design is extremely good, and we can see that it possesses promising features capable of meeting the requirements of the aircraft of the future,” says Sigurd Moe.

Facts:
The HASTEC project (High-stability Altimeter System for Air data Computers), which is part of the EU's 6th Framework Programmes has been running for three years. The project will help to improve aviation safety, and develop next-generation pressure sensors for aircraft that will come into use in 2009. The project will be continued via HISVESTA in the EU's 7th Framework Programme , in which the sensor technology will be further developed for use in aircraft engines and for cabin-pressure measurements. These new sensor platforms will be implemented in new aircraft from 2012.
Text: Åse Dragland
Contact: Dag Ausen, tel: 0047 22 06 75 46Email: dag-ausen@sintef.no

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>