Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology into Heaven

27.03.2008
Everyone on board an Scandinavian Airline System (SAS) plane died when it collided with a light aircraft and exploded in a luggage hanger in Milan in 2001. The smaller plane had taxied wrongly and ended up on the runway where the SAS aircraft was taking off.

The following year, two planes collided in mid-air over Überlingen in the south of Germany on the edge of Lake Constance. One was a Russian passenger flight from Moscow to Barcelona, while the other was a cargo plane heading for Belgium from the Persian Gulf. Seventy-one persons died.

Safety need to be improved

As air transport grows, take-offs become more tightly spaced and more and more planes are circling airports as they wait for permission to land, the potential for disasters increases.

Last year alone, international air traffic grew by 5.9 percent. Parallel to this increase, the minimum distance between aircraft in the air in European airspace has decreased. The minimum vertical distance between aircraft has been halved from 600 metres to 300 for planes flying above 29000 feet. The idea has been to increase airspace capacity by 20 percent. Routes are shortened, and airlines expect to save the huge sum of NOK 30 billion a year in fuel costs alone.

But what above safety up there? In the wake of a number of disasters in the air in 2001 and 2002, the EU took up the problem and resolved that certain aspects of the industry should be studied in detail and evaluated in terms of safety. Several projects were launched under its 6th Framework Programme. One of these was the HASTEC project, which was to develop the next generation of pressure sensors for better aircraft altitude measurement.

Next-generation sensors

Almost three years ago SINTEF and Memscap, a company based in Horten, applied for funding to produce the next generation of precision aircraft altimeters. Together with British and Rumanian partners, the Norwegians were awarded funding for a project worth almost NOK 3 million. The project aims to raise current technology through the next generation of pressure sensors and to produce a sensor platform for the next 20 years.

Today, the partners have almost reached their goal.

“There is a need for aircraft sensors that are more accurate than current models, which are large and reliable, but expensive systems,” says Sigurd Moe of SINTEF ICT. “Among other things, they need to be more stable throughout their life-cycle. The problem with current sensors is that they need to be checked and calibrated regularly, and this is an expensive process since the aircraft needs to be grounded.

Memscap

“Most people are unaware that one of the key components in international aircraft today is based on Norwegian technology,” says Ole Henrik Gusland of Memscap. The company has been producing sensors for the aircraft industry for more than 20 years, and has recently supplied cabin pressure sensors for the Airbus 380 mega-jumbo jet and Boeing's 787 Dreamliner.

The Norwegian company used to be a subsidiary of SensoNor, but was bought up by Memscap SA in 2002. Its product portfolio comprises both high-precision pressure sensors for aircraft and medical pressure sensors.

Two aircraft that have been allocated the same flight corridor need to maintain exactly the correct altitude during the whole flight if they are to avoid problems, explains Gusland. “This means that the altimeters must be correct even if the plane moves through warm and cold air strata, and such accuracy must be maintained throughout the lifetime of the aircraft. On the ground and in the air over Dubai, for example, temperatures can range from plus fifty to minus sixty degrees. Temperature differences of this magnitude are a great challenge for aircraft electronic systems. Airlines want to ground their craft as seldom as possible for calibration.”

MiNaLab

Until recently, Memscap used SensoNor to manufacture silicon chips which are then mounted and encapsulated, but since SensoNor has been bought up by a huge German concern, Memscap has been using SINTEF's Micro and Nanolaboratory for most of its R & D-oriented projects.

“SINTEF is research-oriented, and we regard SINTEF as a small-scale manufacturer and as a supplement to others, because they are close at hand and have a great deal of advanced new equipment for producing sensors,” says Gusland.

Challenges

“When a new sensor chip is being developed, it is important to understand the customer's criteria. These define our frame conditions and set out guidelines for the design. In this case, the fundamental requirement was an extremely stable signal. The sensor must not be affected by external conditions,” says Sigurd Moe of SINTEF ICT.

The problem is that mechanical tensions may develop in the connection with the sensor package itself. The scientists therefore had to produce a silicon based sensor structure in which such tensions would not transmit/propogate into the chip itself. The solution was a spiral silicon element in which the pressure-sensitive part was not affected even if the mounting stretches and drags the element.

SINTEF produces silicon wafers with hundreds of chips on each wafer, several of which are laid on top of each other and glued together before being sawn into chips. Individual chips are then selected and integrated into a sensor package that has been developed by Memscap. The company produces, assembles and tests the sensor package itself.

The first prototype has now been delivered to Memscap by the scientists for further testing and mounting. During the first six months of 2008 these new-technology sensors will be flight tested.

“We believe that the new design is extremely good, and we can see that it possesses promising features capable of meeting the requirements of the aircraft of the future,” says Sigurd Moe.

Facts:
The HASTEC project (High-stability Altimeter System for Air data Computers), which is part of the EU's 6th Framework Programmes has been running for three years. The project will help to improve aviation safety, and develop next-generation pressure sensors for aircraft that will come into use in 2009. The project will be continued via HISVESTA in the EU's 7th Framework Programme , in which the sensor technology will be further developed for use in aircraft engines and for cabin-pressure measurements. These new sensor platforms will be implemented in new aircraft from 2012.
Text: Åse Dragland
Contact: Dag Ausen, tel: 0047 22 06 75 46Email: dag-ausen@sintef.no

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>