Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology into Heaven

27.03.2008
Everyone on board an Scandinavian Airline System (SAS) plane died when it collided with a light aircraft and exploded in a luggage hanger in Milan in 2001. The smaller plane had taxied wrongly and ended up on the runway where the SAS aircraft was taking off.

The following year, two planes collided in mid-air over Überlingen in the south of Germany on the edge of Lake Constance. One was a Russian passenger flight from Moscow to Barcelona, while the other was a cargo plane heading for Belgium from the Persian Gulf. Seventy-one persons died.

Safety need to be improved

As air transport grows, take-offs become more tightly spaced and more and more planes are circling airports as they wait for permission to land, the potential for disasters increases.

Last year alone, international air traffic grew by 5.9 percent. Parallel to this increase, the minimum distance between aircraft in the air in European airspace has decreased. The minimum vertical distance between aircraft has been halved from 600 metres to 300 for planes flying above 29000 feet. The idea has been to increase airspace capacity by 20 percent. Routes are shortened, and airlines expect to save the huge sum of NOK 30 billion a year in fuel costs alone.

But what above safety up there? In the wake of a number of disasters in the air in 2001 and 2002, the EU took up the problem and resolved that certain aspects of the industry should be studied in detail and evaluated in terms of safety. Several projects were launched under its 6th Framework Programme. One of these was the HASTEC project, which was to develop the next generation of pressure sensors for better aircraft altitude measurement.

Next-generation sensors

Almost three years ago SINTEF and Memscap, a company based in Horten, applied for funding to produce the next generation of precision aircraft altimeters. Together with British and Rumanian partners, the Norwegians were awarded funding for a project worth almost NOK 3 million. The project aims to raise current technology through the next generation of pressure sensors and to produce a sensor platform for the next 20 years.

Today, the partners have almost reached their goal.

“There is a need for aircraft sensors that are more accurate than current models, which are large and reliable, but expensive systems,” says Sigurd Moe of SINTEF ICT. “Among other things, they need to be more stable throughout their life-cycle. The problem with current sensors is that they need to be checked and calibrated regularly, and this is an expensive process since the aircraft needs to be grounded.

Memscap

“Most people are unaware that one of the key components in international aircraft today is based on Norwegian technology,” says Ole Henrik Gusland of Memscap. The company has been producing sensors for the aircraft industry for more than 20 years, and has recently supplied cabin pressure sensors for the Airbus 380 mega-jumbo jet and Boeing's 787 Dreamliner.

The Norwegian company used to be a subsidiary of SensoNor, but was bought up by Memscap SA in 2002. Its product portfolio comprises both high-precision pressure sensors for aircraft and medical pressure sensors.

Two aircraft that have been allocated the same flight corridor need to maintain exactly the correct altitude during the whole flight if they are to avoid problems, explains Gusland. “This means that the altimeters must be correct even if the plane moves through warm and cold air strata, and such accuracy must be maintained throughout the lifetime of the aircraft. On the ground and in the air over Dubai, for example, temperatures can range from plus fifty to minus sixty degrees. Temperature differences of this magnitude are a great challenge for aircraft electronic systems. Airlines want to ground their craft as seldom as possible for calibration.”

MiNaLab

Until recently, Memscap used SensoNor to manufacture silicon chips which are then mounted and encapsulated, but since SensoNor has been bought up by a huge German concern, Memscap has been using SINTEF's Micro and Nanolaboratory for most of its R & D-oriented projects.

“SINTEF is research-oriented, and we regard SINTEF as a small-scale manufacturer and as a supplement to others, because they are close at hand and have a great deal of advanced new equipment for producing sensors,” says Gusland.

Challenges

“When a new sensor chip is being developed, it is important to understand the customer's criteria. These define our frame conditions and set out guidelines for the design. In this case, the fundamental requirement was an extremely stable signal. The sensor must not be affected by external conditions,” says Sigurd Moe of SINTEF ICT.

The problem is that mechanical tensions may develop in the connection with the sensor package itself. The scientists therefore had to produce a silicon based sensor structure in which such tensions would not transmit/propogate into the chip itself. The solution was a spiral silicon element in which the pressure-sensitive part was not affected even if the mounting stretches and drags the element.

SINTEF produces silicon wafers with hundreds of chips on each wafer, several of which are laid on top of each other and glued together before being sawn into chips. Individual chips are then selected and integrated into a sensor package that has been developed by Memscap. The company produces, assembles and tests the sensor package itself.

The first prototype has now been delivered to Memscap by the scientists for further testing and mounting. During the first six months of 2008 these new-technology sensors will be flight tested.

“We believe that the new design is extremely good, and we can see that it possesses promising features capable of meeting the requirements of the aircraft of the future,” says Sigurd Moe.

Facts:
The HASTEC project (High-stability Altimeter System for Air data Computers), which is part of the EU's 6th Framework Programmes has been running for three years. The project will help to improve aviation safety, and develop next-generation pressure sensors for aircraft that will come into use in 2009. The project will be continued via HISVESTA in the EU's 7th Framework Programme , in which the sensor technology will be further developed for use in aircraft engines and for cabin-pressure measurements. These new sensor platforms will be implemented in new aircraft from 2012.
Text: Åse Dragland
Contact: Dag Ausen, tel: 0047 22 06 75 46Email: dag-ausen@sintef.no

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>