Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slow speed - less dust

13.03.2008
If an automobile with studded tyres drops its speed from 50 to 30 km/hour, the amount of dust it kicks up is cut in half, a researcher at the Norwegian University of Science and Technology (NTNU) has shown.

There’s a fierce debate in Trondheim, NTNU’s home, as to whether the speed limit in the centre of the city should be dropped from 50 to 30 kilometres per hour. The arguments for lowering the speed limit are many – better air quality is just one of them. But until now, there hasn’t been any concrete information about the effect that lower speeds have on the amount of fine dust on the roads.

NTNU researcher Brynhild Snilsberg has examined the occurrence of fine dust in the summer and winter from winter tyres, summer tyres and studded tyres – and has measured the amount of dust associated with different speeds.

Her results show that the amount of road dust from studded tyres is halved when speeds drop from 50 to 30 km/hour. The dust particles are also less finely ground.

Fast studs, fine dust

“In general, it turns out that the amount of dust that is produced and kicked up increases proportionally with the speed, so that the amount increases from about 2.5 milligrams per cubic metre of air at speeds of 30 km/hr, to a little over 5, at 50 km/hr”, says Snilsberg.

“Also, the particles are on the whole much smaller with higher speeds. The increased speed enables the studs to grind the dust more finely”, explains Snislberg.

“That’s a strong argument for reducing the speed limit in the city, particularly in the winter months”, says the researcher.

Stronger than expected

Snilsberg says she wasn’t surprised to find the trend. “But I didn’t think it would be so strong”, she says.

Roughly three of 10 automobiles in Trondheim are outfitted with studded tyres. Consequently, a halving of the amount of fine dust caused by studded tyres will have a considerable effect on the total amount of dust in the city centre. The national average for the use of studded tyres is 45 per cent.

The problem with road dust from studded tyres is increasing, as both the amount of traffic and the demand for ice- and snow-free roads increase. That means that roads in residential areas outside of the city centre and the more built-up areas will also be affected by this nuisance.

A need for better measurements

The dust in question is called PM 10, particulate matter that is 10 micrometres or less in diameter. The current measurement requirements, which are EU certified, are based exclusively on weight. That isn’t a very adequate standard, Snilsberg believes.

“If you have one particle that’s one milligram on the one hand, and a thousand fine particles that together weigh the same on the other, there’s no doubt as to which is more harmful to your health. But we don’t have any better alternative when it comes to measuring and monitoring air quality in Norwegian cities”, she says.

Snilsberg took her PhD at the Department of Geology and Mineral Resources Engineering at NTNU, and conducted her research at the Norwegian Public Roads Administration.

By Tore Oksholen/Gemini

Nina Tveter | alfa
Further information:
http://www.ntnu.no

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>