Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Realistic training for extreme flight conditions

28.12.2016

New simulation software improves helicopter pilot training

Missions at sea, in mountainous regions or close to skyscrapers are extremely risky for helicopter pilots. The turbulent air flows near oil rigs, ships, cliffs and tall buildings can throw a helicopter off balance and cause a crash. To provide pilots with optimal preparation for these challenging conditions, engineers at the Technical University of Munich (TUM) are developing new simulation software.


This is a simulation of a helicopter-landing on a ship.

Credit: Chair of Helicopter Technology / TUM

Providing helicopter pilots with the best possible preparation for extreme situations: That is the goal of the new simulation software being developed by researchers working at TUM's Chair of Helicopter Technology. For the first time, real-time computational analysis will be implemented for both fluid mechanics and flight dynamics.

"Until now, flight simulators have not adequately reflected the reality of flying in close proximity to large objects," says Dr. Juergen Rauleder. "The problem is that, when it comes to wind conditions and the response of the helicopter, existing programs follow a rigid pattern. That means that local variations and changing conditions are not taken into account - unless the entire flow environment is known in advance."

But it is the unforeseen air flows that can be the most treacherous: For example, a moving ship causes air turbulence and sudden local shifts in wind speed known by specialists as "ship airwake flow". It changes continually through wave action and fluctuating inflow conditions. In addition, turbulence occurs near the deck, the bridge and other ship structures.

As a helicopter approaches the ship, there is interference between these air currents and the flow produced by the rotors. Conditions near a mountain slope or next to high buildings are similarly complicated. In all of these cases, the helicopter's flight characteristics are influenced by complex and overlapping aerodynamic effects.

Stress for pilots and machines

Dealing with those situations takes a lot of skill and practice, both of which can currently be acquired only through on-the-job training. To become adept at landing on a ship in heavy seas, for example, a student pilot has to repeat this tricky situation dozens of times with an experienced flight instructor. That's the only way to gain the necessary experience to compensate for the complex interplay of air flows through perfectly timed adjustments to the pitch of the rotor blades.

"Conventional training is expensive, risky and very stressful for student pilots. It also imposes heavy demands on the aircraft: Because the first attempts usually result in rather hard landings, the dampers and landing gear take quite a beating," explains Rauleder.

Flow fields and flight dynamics all in one

His team has now developed a simulation program that combines flow mechanics and flight dynamics in real time: "The numerical model is extremely flexible and does not depend on stored flow data. We only have to enter the external conditions such as topography, global wind speeds and the helicopter type. During the simulation, our algorithms use that data to continuously compute the interacting flow field at the virtual helicopter's current location," the engineer explains.

The new program also lets pilots instantly "feel" the impact of the local air flows on the helicopter. This allows them to try out the effects of their control movements in a stress-free situation: perfect preparation for a soft landing that is easy on the aircraft. The potential of this method has attracted international interest, including from the U.S. Office of Naval Research, which is contributing funding under the auspices of its basic research program.

The ultimate test for flight simulators: reality

The TUM researchers have successfully validated the new real-time simulation with established reference models. All that is left to do is the biggest test of all: the reality check. To find out whether the virtual models actually reflect conditions at sea, the engineers are cooperating with researchers at the U.S. Naval Academy, the George Washington University and the University of Maryland.

The specialists in Washington have measured air flows on a ship using hundreds of sensors. To check the flight dynamics, the TUM team will also be using in-flight data collected by the German Aerospace Center (DLR). "The validation of the models and testing of our simulation environment by experienced pilots in our research simulator is enormously important for our developments," says Rauleder. "That's the only way we can ensure that the simulator training provides student pilots with optimal preparation for tough missions."

###

Publication:

J. Bludau, J. Rauleder, L. Friedmann, M. Hajek: Real-Time Simulation of Rotor Inflow using a Coupled Flight Dynamics and Fluid Dynamics Simulation, Deutscher Luft- und Raumfahrtkongress 2016, Braunschweig

Contact:

Technical University of Munich
Dr. Juergen Rauleder
+49 (0)89 / 289-16303
juergen.rauleder@tum.de

Media Contact

Stefanie Reiffert
reiffert@zv.tum.de
49-892-891-0519

 @TU_Muenchen

http://www.tum.de 

Stefanie Reiffert | EurekAlert!

More articles from Transportation and Logistics:

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

Strong carbon fiber artificial muscles can lift 12,600 times their own weight

18.04.2018 | Materials Sciences

Polymer-graphene nanocarpets to electrify smart fabrics

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>