Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


"SnowMan" Software Developed at UB Helps Keep Snow Drifts Off the Road

Now being used in Western New York, the software is adaptable to other states

Snow that blows and drifts across roadways has long troubled road maintenance crews and commuters alike, creating treacherous driving conditions and requiring additional maintenance resources to mitigate the problem.

Now, a University at Buffalo engineer has led the development of "SnowMan," a user-friendly, desktop software package that puts cost-effective solutions to the snow drift problem at the fingertips of highway designers and road maintenance personnel.

"SnowMan" helps transportation engineers design roadways that are less likely to be plagued by snow drifts; it also allows maintenance personnel to more precisely situate snow fences in order to reduce drifting on existing roadways.

Stuart Chen, Ph.D., professor of civil, structural and environmental engineering, designed "SnowMan" with former UB graduate student Michael Lamanna. Chen unveiled the software this month at the annual conference of the National Academy of Sciences' Transportation Research Board in Washington, D.C. They developed "SnowMan" with assistance from Darrell Kaminski, regional design engineer for the Western New York region of the New York State Department of Transportation and Ronald Tabler of Tabler and Associates, Niwot, Colorado.

Funded, designed and implemented for the NYSDOT, the computer-aided design software is completely adaptable to wherever blowing and drifting snow is a problem.

"The NYSDOT believes that the SnowMan software will significantly advance the implementation of passive snow-control measures both within New York State and nationwide," said Joseph F. Doherty, senior civil engineer, operations division, NYSDOT, Albany. "It provides an important tool that will facilitate designers' use of decades of research, by Ronald Tabler and others, in the field of blowing snow control.

"We expect improvements in highway safety, lower winter maintenance costs and reduced impacts on the environment as a result."

To mitigate the problems that blowing and drifting snow create, road maintenance crews or contractors will erect snow fences, temporary or permanent barriers made of plastic or wood, along roads where drifting typically occurs.

According to Chen, snow fences serve as a physical means of "interrupting" the blowing and drifting of snow.

"Wind carries particles of snow along just the way that a river will carry silt and mud," he explained. "Snow fences introduce turbulence that causes the wind to deposit some of the snow particles it has been carrying onto the ground behind the snow fence, leaving the roadway clear."

But deciding how to configure and place those snow fences is not an exact science, Chen said.

"Snow fences are typically erected according to general knowledge about an area where blowing and drifting occurs," said NYSDOT's Kaminski, Chen's co-author on the SnowMan research paper and an alumnus of the UB School of Engineering and Applied Sciences.

"Fences are typically a standard height and are placed a certain number of feet from a roadway," he said.

A more precise approach would require maintenance personnel to obtain climate data for an area to determine how much snow and wind that area experiences in a season and then to run a series of calculations to determine the best height and placement for a fence in that location.

The big advantage of SnowMan, Chen explained, is that it provides all of these capabilities to the user automatically, whether the goal is to mitigate a specific blowing and drifting problem or to design a new roadway that minimizes blowing and drifting.

The software is based on a combination of knowledge about the fluid mechanics principles that underlie how snow blows and drifts, with fieldwork done by Tabler, a snow and wind engineering consultant, on the characteristics of blowing and drifting snow.

"SnowMan allows users to analyze different types and heights of virtual snow fences in a variety of distances from a given roadway so that it is possible to come up with the best solution for a specific site and climate," said Chen.

The software includes climatological data about seasonal snowfall and wind velocities for most regions throughout New York State.

"For the first time, it allows us to be precise about where to put snow fences," said Chen.

Chen's work on SnowMan is part of a growing transportation engineering research emphasis at UB, which is based on the university's well-established and internationally renowned strengths in civil and structural engineering, particularly in the physical protection of transportation infrastructure.

UB's transportation research focuses on improving traffic flow and developing intelligent transportation systems, in which information technologies are used to better manage transportation; developing technologies that promote more efficient, safe travel during inclement weather, particularly during upstate New York's harsh winters; and developing collision-avoidance sensors for roads, bridges and vehicles, and more integrated land-use and infrastructure management, funding and planning.

Founded in 1946, the UB School of Engineering and Applied Sciences has 150 faculty members and an enrollment of more than 2,300 students. UB Engineering offers undergraduate and graduate degree programs in six departments. The school's annual research expenditures are approximately $50 million; its per-faculty research expenditure puts it in the top 10 percent of U.S. engineering schools, according to data from the National Science Foundation. UB Engineering works with corporate partners in a variety of ways ranging from joint research ventures, to continuing education, to co-op work arrangements for students.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | EurekAlert!
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>