Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Putting an aircraft in the cooler

To save weight in aircraft, it is important to fit planes with lighter electronics systems, since lower weight means reduced emissions of pollutants such as carbon dioxide (CO2) and nitrous oxides (NOx) as well as improved fuel consumption.

Launching less weight into the air also means less energy consumption. The flipside is that electronics generate heat.

The cockpit is prepared for a simulation with measurements. Fraunhofer IBP

Construction of the three-part fuselage in the Ground Thermal Test Bench. Fraunhofer IBP

That is why the Ground Thermal Test Bench was set up at the Fraunhofer Institute for Building Physics IBP in Holzkirchen. This unique test facility allows researchers to investigate the problem of heat distribution aboard aircraft – and how to channel away unwanted heat.

Picture the scene: brilliant blue skies and the sun beating down. Just the thing for a beach holiday, you might say, but not when you’re sitting in a plane waiting to take off. As temperatures inside the cabin continue to rise – despite the air conditioning system’s best efforts – passengers are left hoping for a speedy go-ahead from the control tower. But it’s not just delayed takeoffs in hot countries that are prompting the aerospace community to tackle the problem of unwanted heat aboard aircraft. More and more it’s about the trend toward the all-electric aircraft, which presents new challenges to manufacturers and researchers alike.

In modern airliners, electronics already govern a variety of functional and control units, from the engines to radio communication, while fly-by-wire, a technology that converts movements of flight controls into electronic signals and transmits them via wires, is the state of the art in flight control systems. Not only that, but there are plans to replace current compressed-air and hydraulic systems, given that these call for compressors, pipes branching out in all directions and a not insubstantial amount of hydraulic fluid. This all adds to a jet’s weight, increasing its fuel consumption.

To save weight in aircraft, it is important to fit planes with lighter electronics systems, since lower weight means reduced emissions of pollutants such as carbon dioxide (CO2) and nitrous oxides (NOx) as well as improved fuel consumption. Launching less weight into the air also means less energy consumption. The flipside is that electronics generate heat – you need only think of a running computer or a cell phone on charge. That is why the Ground Thermal Test Bench was set up at the Fraunhofer Institute for Building Physics IBP in Holzkirchen. This unique test facility allows researchers to investigate the problem of heat distribution aboard aircraft – and how to channel away unwanted heat.

“The facility was developed as part of the EU Clean Sky project and allows us to simulate the conditions on the interior and exterior of the aircraft just as they would be if the aircraft was actually in flight or on the ground,” explains the researcher in charge of the test facility, Markus Siede from the Aviation business area at Fraunhofer IBP. “This means we can examine, compare and optimize a whole range of avionics systems.” Researchers can make use of the Ground Thermal Test Bench to test new developments step by step – from simulation calculations on the computer to experiments in small spaces known as simulation boxes and, ultimately, testing under real conditions using actual sections of aircraft fuselage and with test subjects. Conducting testing in this way offers a number of advantages, as it cuts down on the number of actual test flights required while bringing down costs and protecting the environment.

Test bench design

The Ground Thermal Test Bench at Fraunhofer IBP’s flight test facility comprises a cutting-edge cooling system, heat exchangers, several simulation chambers, an aircraft fuselage divided into three sections – cockpit, cabin and rear – and an aircraft calorimeter (ACC). The ACC is used to simulate the most extreme conditions such as rapid decompression and thermal shock (a rapid change of temperature in a material that causes mechanical tension between the outer and inner parts of the material as heat to or from its surface is conveyed more quickly than to its interior). The aircraft fuselage, meanwhile, gives researchers the opportunity to study individual test configurations in detail.

The ACC comes into play once computer simulations and thermal models have been completed. At this point the task is to validate parameters such as airflow patterns, thermal comfort, energy efficiency, exhaust emissions and temperature changes under real conditions. The simulation chamber gives researchers the opportunity to test modular measurements in a small space based on extreme changes in temperature and pressure.

Fraunhofer researchers use the fuselage to simulate the environment in the cabin and how this relates to the climate on the exterior of the aircraft. Here, original avionics components can be substituted by faithfully reconstructed dummy parts that share the same thermal properties as the actual components. This affords extra flexibility, as the heat emissions and geometry of these “equipment simulators” can be manipulated at will. There are a whole range of important questions to consider in the process: What heat sources are there on the interior? How is the temperature influenced by the passengers and the on-board electronics? Where exactly does heat build up? Is there a possibility that equipment will overheat and how does this affect its operation? The motivation behind the testing is to find solutions that will enable researchers to channel heat away and direct where it goes. A basic solution of the sort applied in server rooms in office buildings, where simply adding ventilation holes can reduce the temperature, is clearly not an option in aircraft. The problem is that an aircraft is exposed to huge changes in pressure during flight, meaning that simply exchanging air with the outside is far from straightforward. Creating openings in the exterior of the aircraft would also lead to turbulence, increasing the aircraft’s air resistance – and its fuel consumption. One interesting idea could be to make use of the fuel tanks as heat/cooling reservoirs.

In principle, the facility also presents the opportunity to carry out experiments with test volunteers, as the three-part fuselage can be fitted with seats.

“Of course, to test extreme scenarios – for instance, how damage to the fuselage in flight would affect passengers – we will be using the DressMAN we developed ourselves in-house. These dummies could also be used to investigate worst-case scenarios that are far too dangerous for human test subjects,” explains Siede.

Temperatures high and low
To reach the core of the Ground Thermal Test Bench you have to go down to the cellar where there is a high-performance air treatment unit that can generate temperatures of up to minus 70 degrees Celsius. This was quite a challenge for the employees who designed the unit, given that conventional air treatment units cannot get lower than minus 50 degrees Celsius at standard pressure. This special unit, though, is capable of replicating extreme conditions that cool the fabric of the aircraft down as far as minus 55 degrees Celsius. In real terms, that is equivalent to a long-haul flight in the northern hemisphere at 10,000 meters altitude.

A second, significantly smaller air treatment unit ensures that temperature and humidity in the cabin can be controlled with precision. Here, the range of temperatures is between three and 70 degrees Celsius. This allows researchers to simulate factors such as the high exterior temperatures before takeoff in a desert country and to identify solutions that can direct the heat involved away from the cabin in an energy-efficient way.

| Fraunhofer-Institute
Further information:

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>



Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

More VideoLinks >>>