Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PolyU researchers seek to calm noise on the road

17.03.2009
Working in collaboration with the government departments, researchers of The Hong Kong Polytechnic University are taking active steps to ease traffic noise generated from frictional contact between vehicle tyre and road surface.

According to the Principal Investigator Dr Hung Wing-tat, Associate Professor of PolyU's Department of Civil and Structural Engineering. The study is made possible with the set up of a sophisticated machine known as the Close-proximity (CPX) Trailer.

While traditional measurement of road traffic noise is done along the roadside, the CPX Trailer enables researchers to measure tyre-road noise on the road with its unique set up.

"The major merit of the CPX method is its ability to delineate the tyre-road noise from the background and thus enable engineers to fully assess the noise reduction effect of various types of low noise materials for road surfacing as well as low noise tyres," said Dr Hung, who is also Researcher of the University's Hong Kong Road Research Laboratory based in Whitehead of Ma On Shan.

The CPX Trailer was set up with initial funding support from the Environmental Conservation and Wheelock Green Fund. Towed by a four-wheel drive 2300 cc saloon car, the trailer contains an acoustic enclosure covering the test tyre and built in with a video-recording camera and two microphones. More importantly, this trailer is tailored to meet the stringent certification requirements of noise measurement and to run on narrow roads in urban areas of Hong Kong.

During the past three years, Dr Hung and his team have been using this CPX Trailer to collect valuable data on tyre-road noise in 66 road sections of the territory - very often in the middle of the night. They have reviewed massive data and examined the effects of different factors including driving speed; type of road surface; polymer modified surface; aggregate size and layer thickness; and the choice of tyre on tyre-road noise.

Their study found that tyre-road noise level increases significantly (over 3dB) when the vehicle speed increases from 50 km/hr to 70 km/hr. They also found that the smaller the stone size on road surface and the thicker the layer, the quieter is the road surface at low speed driving (with a difference of 6 dB at 50km/hr). At a reference speed of 70 km/hr, concrete road is the nosiest. The total volume of air void in the pavement surfacing also appears to have an impact on noise reduction.

According to EPD statistics, more than one million Hong Kong people are irritated by road traffic noise of over 70 dB per hour. In the next stage of study, PolyU has been further supported by a HK$1.77 million grant from the Environment and Conservation Fund to develop a new, fully automated CPX vehicle to upgrade the existing Trailer in measuring tyre-road noise. PolyU researchers will also probe the effectiveness of low noise tyre and the resurfacing of low noise surfacing materials at the same time.

The University will be conducting a series of territory-wide road tests to identify low noise road surfaces and tyres in collaboration with the Highways Department and EPD after the newly design CPX vehicle has been fitted and set up to satisfy all related ISO certification requirements.

Evelyn Chan | ResearchSEA
Further information:
http://www.polyu.edu.hk/
http://www.researchsea.com

More articles from Transportation and Logistics:

nachricht Variable speed limits could reduce crashes, ease congestion in highway work zones
07.06.2017 | University of Missouri-Columbia

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>