Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For Midwesterners, more boxcars mean cleaner air

09.12.2011
Shifting a fraction of truck-borne freight onto trains would have an outsized impact on air quality in the Midwest, according to researchers at the University of Wisconsin–Madison.

Much of that impact boils down to simple efficiency, according to Erica Bickford, a graduate student in UW–Madison's Nelson Institute for Environmental Studies. For each ton they carry, long-distance trucks go about 150 miles on a gallon of diesel fuel. Trains can move a ton more than 400 miles per gallon.

Shifting from road to rail 500 million tons of the freight passing through or to the Midwest would make a large dent in the carbon dioxide spilled into the air by the movement of goods.

"There's a 31 percent decrease in carbon dioxide produced by freight shipping in the region, and that's straight from emissions," says Bickford, who made a model of freight traffic in 10 Midwestern states from Kansas to Ohio that she will present today in San Francisco at the fall meeting of the American Geophysical Union. "It's 21 million metric tons of CO2, the equivalent of what's produced by about 4 million cars."

But carbon dioxide mixes fairly evenly in the atmosphere, spreading its effects around the globe. Bickford's study accounts for weather patterns and the way particular pollutants are distributed to determine how long other products of diesel engines — like black carbon soot and the ozone ingredient and lung irritant nitrogen dioxide (NO2) — linger near their sources.

"The result is a much more thorough and local idea of the differences between truck and rail shipping," says Tracey Holloway, director of the Nelson Institute's Center for Sustainability and the Global Environment and Bickford's advisor. "If you're emitting CO2 in Indiana or India it has the same impact. But something like soot, that has local impact."

More rail traffic would mean more pollutants near the tracks, but relief near roads frequented by trucks — a tradeoff is unbalanced in favor of more densely populated areas.

"Black carbon and NO2 are harmful to everyone's health," Bickford says. "But because more people live near roads than railroad tracks, more people would benefit from the shifts in these pollutants."

As much as 16 percent less black carbon soot would linger near roads with heavy shipping traffic, according to Bickford's model, while the increase around rail corridors would be as high as 20 percent. Nitrogen dioxide would plummet by as much as 30 percent near roads, but rise by as much as 20 percent near railroad tracks.

Holloway's research group is already working on further modeling to explore connected changes in the number of asthma and heart disease cases.

The effects of greater rail use would be particularly noticeable in the middle of the country, according to Bickford.

"We're sort of a freight crossroads in the Midwest," says Bickford, whose work was funded by the National Center for Freight & Infrastructure Research & Education at UW–Madison. "International shipping comes into the country on the coasts and then passes through our backyard on the way to its destination."

The study limited hypothetical changes in shipping to trips of more than 400 miles to ensure a cost savings for shippers, and to cargo — such as automobiles and non-perishable food — that could handle the slower trip in railcars. The 500 million tons Bickford selected for travel by rail represent about 5 percent of U.S. truck freight by weight.

"These aren't pie-in-the-sky figures," Holloway says. "They are reasonable and achievable."

And they come with non-pollution benefits, like reduced traffic congestion, wear on roads and demand for diesel fuel.

"Truck freight travels on publically-funded roads, rail traffic on privately-built tracks," Bickford says. "But these benefits could be an impetus for public investment in rail infrastructure."

— Chris Barncard, 608-890-0465, barncard@wisc.edu —

CONTACT: Erica Bickford, ebickford@wisc.edu; Tracey Holloway, 608-262-5356, taholloway@wisc.edu

Erica Bickford | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>