Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Logistics Model Improves Forecast Accuracy of Retail and Packaged-Goods Orders

13.11.2009
Whether it’s dog food or iPods, tires or televisions, virtually every consumer has endured a frustrating out-of-stock experience. Retailers hate it as much as customers, perhaps more, because they lose money and credibility.

Examining this problem at a specific link – suppliers and distribution centers – in the retail and consumer-packaged goods supply chain, a logistics researcher at the University of Arkansas and his colleague discovered that application of a common error-correction model improves the accuracy of forecasting orders.

“The statistical model we used provides a better understanding of orders in a supply chain and can improve short-term forecasting,” said Matt Waller, professor of marketing and logistics in the Sam M. Walton College of Business. “It has been used heavily in macroeconomics but not in logistics. Our theoretical analysis suggested such a method should improve short-term order forecasts, so we used it to forecast distribution-center orders and found that it reduced error relative to baseline methods used by the consumer-packaged goods industry.”

Within the retail and consumer-packaged goods industry – which affects American consumers on a daily basis – the inability to accurately forecast supply orders is perhaps the greatest obstacle to establishing and maintaining an appropriate amount of goods on retail shelves. Suppliers annually devote millions of dollars toward human and technological resources, including sophisticated and expensive software packages, to address the problem and still struggle to find the right balance.

Supplied with 104 weeks of data from a global consumer packaged-goods company, Waller and Brent Williams, assistant professor at Auburn University, tested the performance of the error-correction model in the ready-to-eat cereal, canned soup and yogurt categories and found significant improvements in order-forecasting accuracy. Their findings will improve important supply-chain measurement standards, such as inventory turnover, gross margin return on inventory investment and in-stock levels. Improvements in these areas will lead to greater service and convenience for consumers and increased profits for retailers.

Traditionally, commercial ordering systems used by suppliers have relied on simple retail order history or conventional forecasting models based on retailers’ point-of-sale data – but not both – to forecast future orders. However, recent changes in supply-chain processes have made it possible for retailers to share sales history with “upstream” supply-chain partners. These developments, Waller said, have generated interest in determining whether point-of-sale history, in conjunction with order data, can improve the ability of a supplier to more accurately predict retail orders.

The researchers first established theoretical evidence for the existence of a long-run equilibrium between point-of-sale information and retail orders, which implied that variables within this relationship followed an error-correction process. This allowed them to empirically examine whether conventional statistical conditions for using the error-correction model were apparent.

“We found several combinations where point-of-sale and distribution-center orders were co-integrated,” Waller said.

However, in a majority of the combinations in which point-of-sale information was non-stationary – meaning statistical properties of sales data changed over time – orders were stationary. Waller and Williams applied the error-correction model under these conditions and again found that it improved short-term order-forecast accuracy. Their analysis demonstrated that the model generally improved forecast accuracy even when some of the statistical conditions for applying it did not hold.

Waller said most commercial software packages can be customized to include the model as an option to suppliers, but the model requires both order history and point-of-sale data.

Presentation of the researchers’ manuscript on the study recently won the E. Grosvenor Plowman Award at the national Supply Chain Managers Education Conference in Chicago. A copy of the study is available upon request.

Waller holds the Garrison Endowed Chair in Supply Chain. He recently administered the Walton College executive M.B.A. program in Shanghai, China, where he researched global supply-chain management. He is systems editor of the Journal of Business Logistics, the flagship academic journal of the Council of Supply Chain Management Professionals. He is also co-editor of International Journal of Logistics Management.

CONTACTS:
Matt Waller, professor
Sam M. Walton College of Business
479-575-8741, mwaller@walton.uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Transportation and Logistics:

nachricht Variable speed limits could reduce crashes, ease congestion in highway work zones
07.06.2017 | University of Missouri-Columbia

nachricht Experiments show that a few self-driving cars can dramatically improve traffic flow
10.05.2017 | University of Illinois College of Engineering

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>