Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who Should Be Legally Responsible for Autonomous Cars?

17.02.2014
Self-driving cars that perform complex maneuvers, such as parking or keeping the lane, without the intervention of a human operator:

The development of such vehicles is the project of a new European research consortium. The legal implications of the new technology are explored by the research center "RobotRecht", which is led by legal scholar Eric Hilgendorf.

This is more than just a future scenario; at least since September 2012, it has become clear: Autonomous vehicles – in other words: cars without an active driver – might actually be encountered in road traffic, at least in the U.S. State of California. On that date, Governor Jerry Brown signed a bill allowing the operation of autonomous vehicles on public roads for testing purposes.

However, this only provided the legal framework for a project that had long become a reality. Internet giant Google had already been testing autonomous vehicles on public roads for several years, taking advantage of a gap in California regulation.

When hackers hijack a car

The following scenario has also become a real possibility: Hackers gain access to the on-board system of a passing car by radio transmission, taking control of the vehicle. In their experiments, scientists were able to infect a vehicle's on-board system with some self-developed software, allowing them, among other things, to activate the car's brakes at will or – even worse – to simply disable them. They were also able to stop the car engine, to switch the lights on and off, to activate the windshield wipers and to control the car in many other ways.

The new research consortium

The new European research project AdaptIVe is set in this context. The abbreviation stands for Automated Driving Applications and Technologies for Intelligent Vehicles. 29 research institutes, automotive suppliers and manufacturers joined forces for the project, including the Universities of Würzburg, Leeds and Trento as well as a number of major companies, such as Volkswagen, Bosch, Daimler, Ford, Opel, Renault and Volvo.

According to the project description, one of the objectives is "to develop new integrated automated functions that contribute towards enhanced traffic safety". New technologies are envisioned to minimize human errors and to optimize the traffic flow.

The Würzburg participants

On the part of Würzburg, legal scholar Professor Eric Hilgendorf participates in the project. At his research center, called "RobotRecht", he spearheads the Europe-wide research on the legal implications of these systems. Overall, the project is funded by the European Union with about 16 million euros; 230,000 euros of this money will be allocated to "RobotRecht".

"Automatic parking assistance systems, lane-keeping systems or cruise control systems in stop-and-go traffic are no longer futuristic visions, but real high-tech components, which are increasingly often included in the standard equipment of vehicles in the premium segment," explains Eric Hilgendorf. From a legal perspective, these partially autonomous vehicles are very problematic.

"For instance, who should be held liable when an automatic parking assistance system causes an accident?" the legal scholar asks. Moreover, who has the right to use the data in the event data recorder? Are manufacturers allowed to sell their customer's data to data dealers? What are the legal aspects of a case in which hackers cause a vehicle crash by means of some malicious software?

Autonomous vehicles are not allowed

Current law provides a plain answer: "Under current law, which is based on the Vienna Convention on Road Traffic, agreed in 1968, vehicles exceeding a certain level of automation are not admissible for road traffic in the first place," says Hilgendorf. This is because the regulations effective today stipulate that all vehicles must be controlled by a human driver at all times. Since the legal framework needs to catch up with the technological development, there is a particular need for legal scholars in this area. Over the next few years, Hilgendorf intends to focus his research on data protection, product liability and road traffic law.

A new legal framework is required

Current law provides that the driver has sole responsibility for safe driving; hence the legal minimum requirement that he should be able to control his vehicle at all times. While this requirement is more or less compatible with the driver assistance systems in use today, things are different when it comes to autonomous vehicles. "In this case, the criterion of the driver's control is no longer suitable as a basis for legal provisions," says Hilgendorf. The fundamental technological change makes an adaptation of the legal framework indispensable – at a European level. Just a few weeks of work won't do the trick. Hilgendorf is sure about this: We have a mountain of legal work to do before the first robotic cars can drive on European roads.

Contact person

Prof. Dr. Dr. Eric Hilgendorf, Department of Criminal Law, Criminal Justice, Information and Computer Science Law, T: +49 (0)931 31-82304, hilgendorf@jura.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>