Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who Should Be Legally Responsible for Autonomous Cars?

17.02.2014
Self-driving cars that perform complex maneuvers, such as parking or keeping the lane, without the intervention of a human operator:

The development of such vehicles is the project of a new European research consortium. The legal implications of the new technology are explored by the research center "RobotRecht", which is led by legal scholar Eric Hilgendorf.

This is more than just a future scenario; at least since September 2012, it has become clear: Autonomous vehicles – in other words: cars without an active driver – might actually be encountered in road traffic, at least in the U.S. State of California. On that date, Governor Jerry Brown signed a bill allowing the operation of autonomous vehicles on public roads for testing purposes.

However, this only provided the legal framework for a project that had long become a reality. Internet giant Google had already been testing autonomous vehicles on public roads for several years, taking advantage of a gap in California regulation.

When hackers hijack a car

The following scenario has also become a real possibility: Hackers gain access to the on-board system of a passing car by radio transmission, taking control of the vehicle. In their experiments, scientists were able to infect a vehicle's on-board system with some self-developed software, allowing them, among other things, to activate the car's brakes at will or – even worse – to simply disable them. They were also able to stop the car engine, to switch the lights on and off, to activate the windshield wipers and to control the car in many other ways.

The new research consortium

The new European research project AdaptIVe is set in this context. The abbreviation stands for Automated Driving Applications and Technologies for Intelligent Vehicles. 29 research institutes, automotive suppliers and manufacturers joined forces for the project, including the Universities of Würzburg, Leeds and Trento as well as a number of major companies, such as Volkswagen, Bosch, Daimler, Ford, Opel, Renault and Volvo.

According to the project description, one of the objectives is "to develop new integrated automated functions that contribute towards enhanced traffic safety". New technologies are envisioned to minimize human errors and to optimize the traffic flow.

The Würzburg participants

On the part of Würzburg, legal scholar Professor Eric Hilgendorf participates in the project. At his research center, called "RobotRecht", he spearheads the Europe-wide research on the legal implications of these systems. Overall, the project is funded by the European Union with about 16 million euros; 230,000 euros of this money will be allocated to "RobotRecht".

"Automatic parking assistance systems, lane-keeping systems or cruise control systems in stop-and-go traffic are no longer futuristic visions, but real high-tech components, which are increasingly often included in the standard equipment of vehicles in the premium segment," explains Eric Hilgendorf. From a legal perspective, these partially autonomous vehicles are very problematic.

"For instance, who should be held liable when an automatic parking assistance system causes an accident?" the legal scholar asks. Moreover, who has the right to use the data in the event data recorder? Are manufacturers allowed to sell their customer's data to data dealers? What are the legal aspects of a case in which hackers cause a vehicle crash by means of some malicious software?

Autonomous vehicles are not allowed

Current law provides a plain answer: "Under current law, which is based on the Vienna Convention on Road Traffic, agreed in 1968, vehicles exceeding a certain level of automation are not admissible for road traffic in the first place," says Hilgendorf. This is because the regulations effective today stipulate that all vehicles must be controlled by a human driver at all times. Since the legal framework needs to catch up with the technological development, there is a particular need for legal scholars in this area. Over the next few years, Hilgendorf intends to focus his research on data protection, product liability and road traffic law.

A new legal framework is required

Current law provides that the driver has sole responsibility for safe driving; hence the legal minimum requirement that he should be able to control his vehicle at all times. While this requirement is more or less compatible with the driver assistance systems in use today, things are different when it comes to autonomous vehicles. "In this case, the criterion of the driver's control is no longer suitable as a basis for legal provisions," says Hilgendorf. The fundamental technological change makes an adaptation of the legal framework indispensable – at a European level. Just a few weeks of work won't do the trick. Hilgendorf is sure about this: We have a mountain of legal work to do before the first robotic cars can drive on European roads.

Contact person

Prof. Dr. Dr. Eric Hilgendorf, Department of Criminal Law, Criminal Justice, Information and Computer Science Law, T: +49 (0)931 31-82304, hilgendorf@jura.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>