Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invention that can be easily retrofitted makes railway traffic safer

10.07.2014

A newly developed simple device helps in better locating trains on the rail network.

Train location systems traditionally work with track current circuits or loops, which make use of the short circuit established between the rails and the train’s axles. The electric current can however be disturbed by dirt or corrosion on the contact surfaces. The solution to this problem developed at the Offenburg University of Applied Sciences is now ready for testing under real life conditions.


A newly developed simple device helps in better locating trains on the rail network.

One of the central requirements in railway traffic is to always know whether a track segment is free or occupied by a train. Precise and robust localization of trains is essential to prevent serious accidents. At the same time, it allows a higher train frequency and thus a better use of the rail capacity. The more precise the localization of the trains, the shorter the distance between trains can be.

The process developed at the Offenburg University of Applied Sciences allows a more reliable determination of the track usage. Until now the position of trains was mostly determined by so-called track current loops. The steel wheels and axles of a train generate appropriate signals by means of the short circuit created between the two rails.

The layer of rust and dirt that develops on the rails over time represents a problem for this process. Furthermore, problems are encountered when locomotives are used across national borders because the wheels, due to the different profiles used in different countries, may not be touching the rail track head in a position, where the rail is kept clean through constant usage.

Professor Peter Hildenbrand of the Faculty of Electrical Engineering and Information Technology, Offenburg University of Applied Sciences, developed an innovative solution to this issue.

The new process achieves the necessary voltage drop which acts as signal for the control system by creating sparks which are capable of penetrating potentially isolating dirt layers. The device which creates the sparks (electrodes, control, power supply etc.) is mounted on the railway carriage. 

Implementing the present invention allows the continued use of the widely implemented track current loops without the need for any modifications. There is no need to make costly changes to the track network, as is the case with inductive track monitoring systems, nor is there a need for substantial investments as is the case with GPS based systems. In the latter case, the reception depends on weather conditions, tunnels and stations and therefore necessitates costly supplementary solutions.

The costs associated with this robust and reliable system are very low and the retro-fitting of older railway stock is simple. The design is uncomplicated so that trains and carriages can be retrofitted easily. The component parts of the system are robust and already proven in other applications, for example the car industry. In addition, the device is independent of the electricity network. Electricity is being supplied by batteries and thus the system remains operational even when the train is stationary and there is no power supply.

In a more integrated Europe with increased rail traffic across national borders, the fact that locomotives do not have to be changed at the border represents an enormous time and cost saving. For this reason, TLB was keen to seek patent protection not only in Germany but also in France and Great Britain.

TLB assists the Offenburg University of Applied Sciences in the commercialisation and marketing of the invention and currently seeks jointly with the inventor, Professor Hildenbrand, collaborators for the further development and licensees to test the system under real life conditions. Rail carriage manufacturers and enterprises involved in railway signaling technology are seen as likely candidates for such a collaboration.

The Offenburg University of Applied Sciences, which owns the rights to this invention, has charged the Technologie-Lizenz-Büro der Baden-Württembergischen Hochschulen (TLB) GmbH in Karlsruhe with the management of the patent rights and the commercialisation of the invention. TLB is now looking for suitable commercial partners and/or licensees and supports the university in the commercialisation and marketing of the innovation.
Further information is available by contacting Mr Emmerich Somlo Dipl. Ing., TLB-Innovations Manager on telephone +49 721 790 040 or via email esomlo@tlb.de

Weitere Informationen:

http://www.technologie-lizenz-buero.com
http://www.hs-offenburg.de/en/

Annette Siller | idw - Informationsdienst Wissenschaft

More articles from Transportation and Logistics:

nachricht First electrical car ferry in the world in operation in Norway now
19.05.2015 | Siemens AG

nachricht Economic and effective security design
04.05.2015 | Fraunhofer Institute for Software and Systems Engineering ISST

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>