Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invention that can be easily retrofitted makes railway traffic safer

10.07.2014

A newly developed simple device helps in better locating trains on the rail network.

Train location systems traditionally work with track current circuits or loops, which make use of the short circuit established between the rails and the train’s axles. The electric current can however be disturbed by dirt or corrosion on the contact surfaces. The solution to this problem developed at the Offenburg University of Applied Sciences is now ready for testing under real life conditions.


A newly developed simple device helps in better locating trains on the rail network.

One of the central requirements in railway traffic is to always know whether a track segment is free or occupied by a train. Precise and robust localization of trains is essential to prevent serious accidents. At the same time, it allows a higher train frequency and thus a better use of the rail capacity. The more precise the localization of the trains, the shorter the distance between trains can be.

The process developed at the Offenburg University of Applied Sciences allows a more reliable determination of the track usage. Until now the position of trains was mostly determined by so-called track current loops. The steel wheels and axles of a train generate appropriate signals by means of the short circuit created between the two rails.

The layer of rust and dirt that develops on the rails over time represents a problem for this process. Furthermore, problems are encountered when locomotives are used across national borders because the wheels, due to the different profiles used in different countries, may not be touching the rail track head in a position, where the rail is kept clean through constant usage.

Professor Peter Hildenbrand of the Faculty of Electrical Engineering and Information Technology, Offenburg University of Applied Sciences, developed an innovative solution to this issue.

The new process achieves the necessary voltage drop which acts as signal for the control system by creating sparks which are capable of penetrating potentially isolating dirt layers. The device which creates the sparks (electrodes, control, power supply etc.) is mounted on the railway carriage. 

Implementing the present invention allows the continued use of the widely implemented track current loops without the need for any modifications. There is no need to make costly changes to the track network, as is the case with inductive track monitoring systems, nor is there a need for substantial investments as is the case with GPS based systems. In the latter case, the reception depends on weather conditions, tunnels and stations and therefore necessitates costly supplementary solutions.

The costs associated with this robust and reliable system are very low and the retro-fitting of older railway stock is simple. The design is uncomplicated so that trains and carriages can be retrofitted easily. The component parts of the system are robust and already proven in other applications, for example the car industry. In addition, the device is independent of the electricity network. Electricity is being supplied by batteries and thus the system remains operational even when the train is stationary and there is no power supply.

In a more integrated Europe with increased rail traffic across national borders, the fact that locomotives do not have to be changed at the border represents an enormous time and cost saving. For this reason, TLB was keen to seek patent protection not only in Germany but also in France and Great Britain.

TLB assists the Offenburg University of Applied Sciences in the commercialisation and marketing of the invention and currently seeks jointly with the inventor, Professor Hildenbrand, collaborators for the further development and licensees to test the system under real life conditions. Rail carriage manufacturers and enterprises involved in railway signaling technology are seen as likely candidates for such a collaboration.

The Offenburg University of Applied Sciences, which owns the rights to this invention, has charged the Technologie-Lizenz-Büro der Baden-Württembergischen Hochschulen (TLB) GmbH in Karlsruhe with the management of the patent rights and the commercialisation of the invention. TLB is now looking for suitable commercial partners and/or licensees and supports the university in the commercialisation and marketing of the innovation.
Further information is available by contacting Mr Emmerich Somlo Dipl. Ing., TLB-Innovations Manager on telephone +49 721 790 040 or via email esomlo@tlb.de

Weitere Informationen:

http://www.technologie-lizenz-buero.com
http://www.hs-offenburg.de/en/

Annette Siller | idw - Informationsdienst Wissenschaft

More articles from Transportation and Logistics:

nachricht Siemens to modernize large sections of the Belgian railway network
04.08.2015 | Siemens AG

nachricht First Siemens-built Thameslink train arrives in London
31.07.2015 | Siemens AG

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Cosmic recycling

02.09.2015 | Physics and Astronomy

Pathways to Deep Decarbonization in Germany

02.09.2015 | Studies and Analyses

How to get rid of a satellite after its retirement

02.09.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>