Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IMO grants Final Approval to Siemens' ballast water management system

02.03.2012
It is estimated that more than 50,000 vessels will require retrofitting to meet new provisions

The Maritime Environmental Protection Committee of the United Nations' International Maritime Organization (IMO) has granted Siemens Final Approval for its Sicure ballast water management system.

The Final Approval is based on a directive issued by the IMO, a specialized agency of the United Nations, which requires all deep-sea vessels to operate IMO-approved ballast water management systems. The objective is to avoid the spread of alien aquatic organisms and pathogens carried in untreated ballast water. The IMO directive will come into force in the near future and will entail retrofitting approximately 50,000 sea-going vessels worldwide.

For its Sicure system, the Siemens Industry Automation Division received Basic Approval back in 2010, as the first leg of a two-tier certification process by the IMO. By granting Final Approval, the IMO confirms the new Siemens ballast water management system's environmental compatibility and compliance with the safety standards. The Sicure system is a further development of the Chloropac system, which has seen 35 years of successful ship-board use for treating seawater cooling circuits. The electrolytic system produces hypochlorite from the salt contained in seawater.

The Sicure system consists of a filtration stage followed by electrochlorination and a dosing unit which precisely meters the addition of hypochlorite. Electrochlorination occurs in a sidestream of the ballast water main. Only about one percent of the ballast water to be treated is carried through the system's electrolysis cells. This makes for small system components which are easily integrated into existing vessels. Another key advantage of the Sicure system lies in the fact that it is not only used for treating ballast water but also for treating cooling water circuits on board. Since ballasting occurs only during very short periods in a ship's lifetime, conventional ballast water systems remain idle 95 percent of the time. By contrast, the Sicure system can be used all the time, eliminating the need for an additional system for treating cooling water. The Siemens system is particularly suited for vessels above a gross tonnage of 35,000.

Water treatment equipment is an important part of Siemens' marine technology product offering. Siemens also specializes in the design, manufacture and commissioning of electrical ship propulsion systems for all types of merchant vessels, naval vessels and submarines worldwide.

Further information about solutions for water treatment is available at:
http://www.siemens.com/sicure
The Siemens Industry Sector (Erlangen, Germany) is the world's leading supplier of innovative and environmentally friendly products and solutions for industrial customers. With end-to-end automation technology and industrial software, solid vertical-market expertise, and technology-based services, the Sector enhances its customers' productivity, efficiency, and flexibility. With a global workforce of more than 100,000 employees, the Industry Sector comprises the Divisions Industry Automation, Drive Technologies and Customer Services as well as the Business Unit Metals Technologies. For more information, visit http://www.siemens.com/industry

The Siemens Industry Automation Division (Nuremberg, Germany) supports the entire value chain of its industrial customers – from product design to production and services – with an unmatched combination of automation technology, industrial control technology, and industrial software. With its software solutions, the Division can shorten the time-to-market of new products by up to 50 percent. Industry Automation comprises five Business Units: Industrial Automation Systems, Control Components and Systems Engineering, Sensors and Communications, Siemens PLM Software, and Water Technologies. For more information, visit http://www.siemens.com/industryautomation

SiCURE and Chloropac are trademarks of Siemens and/or its affiliates in some countries.

Reference Number: IIA2012032819e

Contact
Mr. Peter Jefimiec
Industry Automation Division
Siemens AG
Gleiwitzerstr. 555
90475 Nuremberg
Germany
Tel: +49 (911) 895-7975
peter.jefimiec@siemens.com
Contact USA
Ms. Allison Britt
Water Technologies Business Unit
Siemens Industry, Inc.
Hoffman Estates
IL 60192
USA
Tel: +1 (847) 713-8477
allison.britt@siemens.com

Peter Jefimiec | Siemens Industry
Further information:
http://www.siemens.com/water

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>