Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


I+D+I, the key to increase flight safety

Researchers from the University Carlos III of Madrid (UC3M) are working in collaboration with several aeronautical companies to study the extent of damage caused by the impact of objects against aircrafts during the most critical flight manoeuvres: take-off and landing.

The Department of Continuous Media and Structural Theory at the University Carlos III of Madrid (UC3M), in collaboration with the aeronautical companies EADS-CASA, EADS-SOCATA (France) and AERNNOVA, is executing several research projects involving the study of the behaviour of structural elements of planes that suffer an impact, a situation that planes might experience during their years of service.

As a result of this collaboration, experimental devices for the analysis of aeronautical components and numerical models are being developed, providing verification of the behavioural hypothesis for aeronautical structures of planes.

The research, which started in the year 2004 and still continues today, analyses problems that need to be evaluated for the certification of aircrafts, such as the question of impacts of external bodies against the airplanes during landing and take-off, comparable to the case that caused the accident of the Concorde on 25th July 2000.

On that occasion, the impact of an object against the wing of the supersonic plane during take-off caused a fire in the engine that led to the death of over a hundred passengers as well as ruining the impeccable record of the famous aircraft.

The risk of impact can also come from meteorological conditions, such as impacts of lumps of ice originating either from hail storms or the loose ice that sometimes accumulates on the plane itself. Ramón Zaera, Director of the Continuous Media and Structural Theory Department at the UC3M, states that the objective is both to develop an experimental study that reproduces the operative conditions of the aeronautical components as well as to produce numerical models that simulate the application of impulsive loads on the structures, the effect of changes of temperature and the damage caused to the components.

Supersonic trials.

The developments in this field, are related to great aeronautical engineering challenges in Europe, so it is the case of the enormous Airbus A380 and the future generation of the A320, which were tested in a pioneering mechanical impact lab in Europe that was created by the UC3M and EADS-CASA for the execution of complex experimental procedures. Their pneumatic launchers, consisting of tubes about 4 meters in length, permit the reproduction of impacts and collisions on structural elements of the fuselage, wings, stabilizers or the gondola of aircrafts with speeds ranging from 300 km/h to 3,000 km/h. This lab, located on the Leganés campus of the university, has been researching projects summing up to 900,000 Euros since the year 2004.

The impact process on aeronautical structures takes place in a very short period of time, in the range of a few milliseconds, which makes data acquisition harder in experimental tests and necessitates the consideration of inertial effects and non-linear behaviours when using mechanical models of materials. This is why it is necessary to use numerical simulations of the experiments using specific models.

The Department Continuous Media and Structural Theory at the UC3M contributes to the technological advance in the aeronautical sector through the participation of many of their professors in two research groups, Dynamics and Fracture of Structural Elements and Advanced Mechanical Elements. In this aspect, this department presents a respected research trajectory, having published 20 scientific articles during the year 2008 in journals with a high JRC rating in their category, such as those related with the experimental and/or numerical analysis of structural elements under dynamic loads and impacts.

Since the year 2008, the department participates as an Organismo Público de Investigación (OPI) of AERNNOVA in a CENIT project entitled "Innovación en Composites Avanzados y Rear-End Optimizado" lead by AIRBUS and with a total cost of 34 million Euros. It’s attached to the INGENIO 2010 program and is a reflection of the dedication of public organism and the industrial sector for university level research in aeronautical safety.

Oficina Información Científica | alfa
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>