Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Green wave in Muenster: Adaptive signal control from Siemens offers car drivers a 30 percent improvement in flow of traffic

One of Siemens Mobility’s central themes at the UITP exhibition in Vienna will be solutions for road traffic.

Representative of these solutions will be the “green wave for Muenster”, where road users benefit from a succession of green lights more frequently thanks to the Sitraffic Motion adaptive network control system.

Since the middle of last year, the new procedure analyzes the current traffic situation on a main artery and then automatically optimizes the red-green phases of the traffic signals at the 24 intersections on this road. The result is an average 30 percent reduction of driver waiting times at traffic lights.

This figure was corroborated by a study done by Ruhr-Universität Bochum and published at the beginning of 2009. Fuel consumption and exhaust emissions are reduced as well. These results certainly convinced the people of Muenster, and the city council has decided to link up a second main traffic artery to the Sitraffic Motion system in the near future.

Starting in 2006, Siemens installed the Sitraffic Motion traffic control system at 24 traffic signal-controlled intersections on the heavily traveled Albersloher Weg in Muenster. This was done in connection with a new traffic computer system. By means of detectors mounted in the approach roads, Sitraffic Motion determines how many vehicles are underway, where they turn off and where there is an imminent threat of congestion.

A central traffic computer receives the data, analyzes the traffic situation at the intersections along the six-kilometer-long road in 15 to 20 minute cycles and automatically adapts the lengths of the red-green phases of the traffic signals as well as the green wave accordingly. In June 2008, installation on the road used as a model was completed. The result: traffic flows more smoothly, there are fewer stops, and waiting times for car drivers are shorter. Fuel consumption and exhaust emissions are also reduced as a consequence.

The success of the new method has been confirmed by a representative study carried out by Ruhr-Universität Bochum. The study compared the three development stages of the traffic system in use on Albersloher Weg: the original situation with fixed time control, the conventionally planned, traffic-dependent control unit in the individual traffic signal installations and, finally, the Siemens approach in the form of the traffic-adaptive control system, also referred to as a model-based system. The team surrounding Prof. Werner Brilon at the university’s Institute for Transportation and Traffic Engineering used values from their own measurements with detectors, GPS (Global Positioning System) and video vehicles as well as the telematics data of the city’s public transit system.

“The level of improvement has been unexpectedly high,” summarized the authors of the study, who went on to say that the adaptive control system brought about a further improvement in traffic quality compared to a traffic-dependent control method.

In view of the excellent success achieved in Albersloher Weg, the Muenster city council decided to equip another busy road with the new control system from Siemens in a subsequent construction phase.

You can download the study at the following link (available in German only):

The Siemens Industry Sector (Erlangen, Germany) is the worldwide leading supplier of production, transportation, building and lighting technologies. With integrated automation technologies as well as comprehensive industry-specific solutions, Siemens increases the productivity, efficiency and flexibility of its customers in the fields of industry and infrastructure. The Industry Sector consists of six Divisions: Building Technologies, Drive Technologies, Industry Automation, Industry Solutions, Mobility and Osram. With around 222,000 employees worldwide, Siemens Industry posted a profit of EUR 3.86 billion with revenues totaling EUR 38 billion in fiscal year 2008 (ended September 30).

The Mobility Division (Erlangen, Germany) is the internationally leading provider of transportation and logistics solutions. With its "Complete mobility" approach, the Division is focused on networking the various modes of transportation in order to ensure the efficient transport of people and goods. “Complete mobility” combines the company's competence in operations control systems for railways and traffic control systems for roadways together with solutions for airport logistics, postal automation, traction power supplies and rolling stock for mass transit, regional and mainline services, turnkey systems as well as forward-looking service concepts.

Siemens AG
Corporate Communications and Government Affairs Wittelsbacherplatz 2,
80333 Munich
Reference number: IMO200903.025 e fp

Anja Uhlendorff | Siemens Industry Sector
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>