Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ERTICO-ITS Europe welcomes Commission Decision on ITS radio frequency to boost smart vehicle communications systems

07.08.2008
ERTICO-ITS Europe, a multi-sector partnership dedicated to the development and deployment of intelligent transportation systems and services (ITS), welcomes the European Commission decision to reserve, across Europe, a dedicated radio band for intelligent vehicle communications.

This will enable vehicles to communicate and interact with each other and with the road infrastructure via one single radio frequency. These so-called Cooperative Systems offer the promise of fewer traffic accidents, lower delays and costs, and reduced fuel consumption and pollutant emissions.

Until now, “intelligent” vehicle systems using ICT for vehicle drivers and other road users have been predominantly autonomous, stand-alone devices. ERTICO believes that intelligent cooperative systems are the next challenge for achieving sustainable mobility for the 21st century. Hermann Meyer, CEO of ERTICO-ITS Europe comments: “We are delighted with this new Decision as it gives a strong message to industry and road operators that the EU is committed to the deployment of these systems for a new generation of applications and services for road safety, traffic management and transport efficiency. ”

The ERTICO-led CVIS (Cooperative Vehicle-Infrastructure Systems) project has set itself the objective to develop a 'smart' technology platform to allow vehicles and road infrastructure to communicate, and thus to achieve benefits through cooperation. CVIS is a major European research and development initiative, co-funded by the European Commission under the Sixth Framework Programme, that brings together a total of 63 partners from across Europe, including vehicle manufacturers and suppliers, telecommunication companies, research institutes and universities, as well as both national and local public authorities.

CVIS Project Manager Paul Kompfner of ERTICO comments: “This project aims to help launch a revolution in mobility for travellers and goods, completely re-engineering how drivers, their vehicles, and the goods they carry and the transport infrastructure interact.” Indeed, if successful, CVIS would enable drivers to interact directly with local traffic management systems, and receive recommendations on the best route to their destination, thus helping to reduce road congestion. Information shown on road signs such as speed limits or traffic messages would also be sent wirelessly and displayed inside the vehicle.

As well as the technological challenges, the CVIS project is also tackling key issues for the take-up and large-scale deployment of this interoperable technology by vehicle manufacturers, road operators and the general public.

The recent European Commission Decision to allocate a single radio frequency for vehicle communication systems is a major policy milestone to boost faster deployment across Europe: “By removing the uncertainty about radio spectrum availability for cooperative systems the Commission Decision will spur the development and deployment of a growing number of cooperative mobility applications in the EU by providing one single frequency to the automotive industry and road operators.” says Kompfner.

In the first half of 2009 the CVIS technologies and applications developed over the last two years will move into the testing and validation phase, where they will be trialled at test sites in seven European countries: France, Germany, Italy, the Netherlands, Belgium, Sweden and the UK. The CVIS trials will use the newly dedicated ITS frequency band, and will be amongst the first to test the performance of these novel communication technologies.

Ariane Brusselmans | alfa
Further information:
http://www.ertico.com

More articles from Transportation and Logistics:

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

nachricht Researchers 'count cars' -- literally -- to find a better way to control heavy traffic
10.08.2017 | Florida Atlantic University

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>