Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Study How to Improve High-Speed Rail Ties Against Freezing, Thawing Conditions

31.10.2012
A Kansas State University-led research project is helping high-speed rail systems handle the stress of freezing and thawing weather conditions.

The university's Kyle Riding, assistant professor of civil engineering, is leading a three-year study that looks at the freeze-thaw durability of concrete railroad ties. The research is essential to developing safe and durable high-speed rail systems.

Riding is collaborating with Mohammed Albahttiti, civil engineering doctoral candidate from the United Arab Emirates; the university's Institute of Environmental Research; as well as a colleague at the University of Illinois at Urbana-Champaign, and commercial partners Canadian National Railroad and CXT Concrete Ties Inc. The Federal Railroad Association recently awarded Riding more than $1.2 million to study the materials and fabrication process, and to develop quality control tests that ensure safe freeze-thaw durable concrete railroad ties.

"Freeze-thaw is a stressor that happens in pretty much all concrete when it is exposed to water and then freezing and thawing temperatures," Riding said.

When water freezes it grows in size by roughly 9 percent, Riding said. These increases, coupled with the decreases when the ice melts, cause stress on the container the ice forms in. When too much stress occurs the container can break -- similar to what happens when a full soda bottle is left in the freezer.

In concrete rail ties water collects and freezes in the pores of the concrete. As the liquid freezes it creates stress in the railroad tie, which can crack the ties. High-speed rail systems are more sensitive to these problems because of the high speed at which the trains travel on the tracks.

As high-speed rail systems become more widely adopted around the world, it becomes essential to keep passengers safe and maintain the rail system infrastructure against freezing and thawing conditions, Riding said.

To study the freeze-thaw conditions in concrete rail ties, researchers will add surfactants to the concrete as it is being mixed in the laboratory. These compounds produce millions of microscopic bubbles in the concrete that act as pressure release valves to help protect the concrete against damage.

One of the challenges will be to ensure that the bubbles are evenly dispersed through the concrete rail ties and small enough to protect the concrete from damage.

Researchers will evaluate the vibration conditions and air voids created by the bubbles in rail ties produced from various other materials, including surrogate clear materials, cement paste and mortars before scaling up to concrete. The ties will also be studied to determine if they get wet enough on the tracks to cause damage.

Additionally, the team is developing evaluation methods that will help railroad tie manufacturers determine the freeze-thaw resistance of concrete rail ties once they are produced.

"This is a good way to take fundamental science and apply it to a real-world application that will affect our transportation infrastructure and our communities," Riding said. "Plus, who doesn't like trains?"

Kyle Riding, 785-532-1578, riding@k-state.edu

Kyle Riding | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Transportation and Logistics:

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Efficient and intelligent: Drones get to grips with planning the delivery of goods
12.07.2017 | Alpen-Adria-Universität Klagenfurt

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>