Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Study How to Improve High-Speed Rail Ties Against Freezing, Thawing Conditions

31.10.2012
A Kansas State University-led research project is helping high-speed rail systems handle the stress of freezing and thawing weather conditions.

The university's Kyle Riding, assistant professor of civil engineering, is leading a three-year study that looks at the freeze-thaw durability of concrete railroad ties. The research is essential to developing safe and durable high-speed rail systems.

Riding is collaborating with Mohammed Albahttiti, civil engineering doctoral candidate from the United Arab Emirates; the university's Institute of Environmental Research; as well as a colleague at the University of Illinois at Urbana-Champaign, and commercial partners Canadian National Railroad and CXT Concrete Ties Inc. The Federal Railroad Association recently awarded Riding more than $1.2 million to study the materials and fabrication process, and to develop quality control tests that ensure safe freeze-thaw durable concrete railroad ties.

"Freeze-thaw is a stressor that happens in pretty much all concrete when it is exposed to water and then freezing and thawing temperatures," Riding said.

When water freezes it grows in size by roughly 9 percent, Riding said. These increases, coupled with the decreases when the ice melts, cause stress on the container the ice forms in. When too much stress occurs the container can break -- similar to what happens when a full soda bottle is left in the freezer.

In concrete rail ties water collects and freezes in the pores of the concrete. As the liquid freezes it creates stress in the railroad tie, which can crack the ties. High-speed rail systems are more sensitive to these problems because of the high speed at which the trains travel on the tracks.

As high-speed rail systems become more widely adopted around the world, it becomes essential to keep passengers safe and maintain the rail system infrastructure against freezing and thawing conditions, Riding said.

To study the freeze-thaw conditions in concrete rail ties, researchers will add surfactants to the concrete as it is being mixed in the laboratory. These compounds produce millions of microscopic bubbles in the concrete that act as pressure release valves to help protect the concrete against damage.

One of the challenges will be to ensure that the bubbles are evenly dispersed through the concrete rail ties and small enough to protect the concrete from damage.

Researchers will evaluate the vibration conditions and air voids created by the bubbles in rail ties produced from various other materials, including surrogate clear materials, cement paste and mortars before scaling up to concrete. The ties will also be studied to determine if they get wet enough on the tracks to cause damage.

Additionally, the team is developing evaluation methods that will help railroad tie manufacturers determine the freeze-thaw resistance of concrete rail ties once they are produced.

"This is a good way to take fundamental science and apply it to a real-world application that will affect our transportation infrastructure and our communities," Riding said. "Plus, who doesn't like trains?"

Kyle Riding, 785-532-1578, riding@k-state.edu

Kyle Riding | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>