Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Study How to Improve High-Speed Rail Ties Against Freezing, Thawing Conditions

31.10.2012
A Kansas State University-led research project is helping high-speed rail systems handle the stress of freezing and thawing weather conditions.

The university's Kyle Riding, assistant professor of civil engineering, is leading a three-year study that looks at the freeze-thaw durability of concrete railroad ties. The research is essential to developing safe and durable high-speed rail systems.

Riding is collaborating with Mohammed Albahttiti, civil engineering doctoral candidate from the United Arab Emirates; the university's Institute of Environmental Research; as well as a colleague at the University of Illinois at Urbana-Champaign, and commercial partners Canadian National Railroad and CXT Concrete Ties Inc. The Federal Railroad Association recently awarded Riding more than $1.2 million to study the materials and fabrication process, and to develop quality control tests that ensure safe freeze-thaw durable concrete railroad ties.

"Freeze-thaw is a stressor that happens in pretty much all concrete when it is exposed to water and then freezing and thawing temperatures," Riding said.

When water freezes it grows in size by roughly 9 percent, Riding said. These increases, coupled with the decreases when the ice melts, cause stress on the container the ice forms in. When too much stress occurs the container can break -- similar to what happens when a full soda bottle is left in the freezer.

In concrete rail ties water collects and freezes in the pores of the concrete. As the liquid freezes it creates stress in the railroad tie, which can crack the ties. High-speed rail systems are more sensitive to these problems because of the high speed at which the trains travel on the tracks.

As high-speed rail systems become more widely adopted around the world, it becomes essential to keep passengers safe and maintain the rail system infrastructure against freezing and thawing conditions, Riding said.

To study the freeze-thaw conditions in concrete rail ties, researchers will add surfactants to the concrete as it is being mixed in the laboratory. These compounds produce millions of microscopic bubbles in the concrete that act as pressure release valves to help protect the concrete against damage.

One of the challenges will be to ensure that the bubbles are evenly dispersed through the concrete rail ties and small enough to protect the concrete from damage.

Researchers will evaluate the vibration conditions and air voids created by the bubbles in rail ties produced from various other materials, including surrogate clear materials, cement paste and mortars before scaling up to concrete. The ties will also be studied to determine if they get wet enough on the tracks to cause damage.

Additionally, the team is developing evaluation methods that will help railroad tie manufacturers determine the freeze-thaw resistance of concrete rail ties once they are produced.

"This is a good way to take fundamental science and apply it to a real-world application that will affect our transportation infrastructure and our communities," Riding said. "Plus, who doesn't like trains?"

Kyle Riding, 785-532-1578, riding@k-state.edu

Kyle Riding | Newswise Science News
Further information:
http://www.k-state.edu

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>